Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspeclsp Structured version   Visualization version   GIF version

Theorem prjspeclsp 42635
Description: The vectors equivalent to a vector 𝑋 are the nonzero vectors in the span of 𝑋. (Contributed by Steven Nguyen, 6-Jun-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjsprellsp.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjspeclsp ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ((𝑁‘{𝑋}) ∖ {(0g𝑉)}))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑉,𝑙,𝑥   𝑁,𝑙,𝑥   𝑆,𝑙   𝐵,𝑙
Allowed substitution hints:   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦)   𝑁(𝑦)   𝑉(𝑦)

Proof of Theorem prjspeclsp
StepHypRef Expression
1 prjsprel.1 . . . . . . 7 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
21cnveqi 5854 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
3 cnvopab 6126 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
42, 3eqtri 2758 . . . . 5 = {⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
54eceq2i 8761 . . . 4 [𝑋] = [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
6 df-ec 8721 . . . . . 6 [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋})
76a1i 11 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}))
8 imaopab 42282 . . . . . 6 ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}) = {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
98a1i 11 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}) = {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))})
10 df-rex 3061 . . . . . . . . 9 (∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ∃𝑦(𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
11 velsn 4617 . . . . . . . . . . . 12 (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋)
1211anbi1i 624 . . . . . . . . . . 11 ((𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
13 eleq1 2822 . . . . . . . . . . . . . 14 (𝑦 = 𝑋 → (𝑦𝐵𝑋𝐵))
1413anbi2d 630 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥𝐵𝑋𝐵)))
15 oveq2 7413 . . . . . . . . . . . . . . 15 (𝑦 = 𝑋 → (𝑙 · 𝑦) = (𝑙 · 𝑋))
1615eqeq2d 2746 . . . . . . . . . . . . . 14 (𝑦 = 𝑋 → (𝑥 = (𝑙 · 𝑦) ↔ 𝑥 = (𝑙 · 𝑋)))
1716rexbidv 3164 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑦) ↔ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
1814, 17anbi12d 632 . . . . . . . . . . . 12 (𝑦 = 𝑋 → (((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
1918pm5.32i 574 . . . . . . . . . . 11 ((𝑦 = 𝑋 ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2012, 19bitri 275 . . . . . . . . . 10 ((𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2120exbii 1848 . . . . . . . . 9 (∃𝑦(𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ ∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
22 19.41v 1949 . . . . . . . . . 10 (∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))) ↔ (∃𝑦 𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
23 elisset 2816 . . . . . . . . . . . 12 (𝑋𝐵 → ∃𝑦 𝑦 = 𝑋)
2423ad2antlr 727 . . . . . . . . . . 11 (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) → ∃𝑦 𝑦 = 𝑋)
2524pm4.71ri 560 . . . . . . . . . 10 (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) ↔ (∃𝑦 𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2622, 25bitr4i 278 . . . . . . . . 9 (∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
2710, 21, 263bitri 297 . . . . . . . 8 (∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
2827abbii 2802 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
29 iba 527 . . . . . . . . . 10 (𝑋𝐵 → (𝑥𝐵 ↔ (𝑥𝐵𝑋𝐵)))
3029bicomd 223 . . . . . . . . 9 (𝑋𝐵 → ((𝑥𝐵𝑋𝐵) ↔ 𝑥𝐵))
3130anbi1d 631 . . . . . . . 8 (𝑋𝐵 → (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) ↔ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
3231abbidv 2801 . . . . . . 7 (𝑋𝐵 → {𝑥 ∣ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
3328, 32eqtrid 2782 . . . . . 6 (𝑋𝐵 → {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
3433adantl 481 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
357, 9, 343eqtrd 2774 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
365, 35eqtrid 2782 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
37 df-rab 3416 . . . 4 {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
3837a1i 11 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
39 prjspertr.b . . . . 5 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
4039rabeqi 3429 . . . 4 {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)}
41 rabdif 4296 . . . . 5 ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}) = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)}
4241a1i 11 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}) = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
4340, 42eqtr4id 2789 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
4436, 38, 433eqtr2d 2776 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
45 prjspertr.s . . . . . 6 𝑆 = (Scalar‘𝑉)
46 prjspertr.x . . . . . 6 · = ( ·𝑠𝑉)
47 prjspertr.k . . . . . 6 𝐾 = (Base‘𝑆)
481, 39, 45, 46, 47prjsper 42631 . . . . 5 (𝑉 ∈ LVec → Er 𝐵)
4948adantr 480 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → Er 𝐵)
50 ercnv 8740 . . . . 5 ( Er 𝐵 = )
5150eqcomd 2741 . . . 4 ( Er 𝐵 = )
5249, 51syl 17 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → = )
5352eceq2d 8762 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = [𝑋] )
54 lveclmod 21064 . . . . 5 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
55 difss 4111 . . . . . . 7 ((Base‘𝑉) ∖ {(0g𝑉)}) ⊆ (Base‘𝑉)
5639, 55eqsstri 4005 . . . . . 6 𝐵 ⊆ (Base‘𝑉)
5756sseli 3954 . . . . 5 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
58 eqid 2735 . . . . . 6 (Base‘𝑉) = (Base‘𝑉)
59 prjsprellsp.n . . . . . 6 𝑁 = (LSpan‘𝑉)
6045, 47, 58, 46, 59lspsn 20959 . . . . 5 ((𝑉 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑉)) → (𝑁‘{𝑋}) = {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
6154, 57, 60syl2an 596 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (𝑁‘{𝑋}) = {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
62 simpr 484 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → 𝑥 = (𝑙 · 𝑋))
6354adantr 480 . . . . . . . . . . . 12 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → 𝑉 ∈ LMod)
6463adantr 480 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑉 ∈ LMod)
65 simpr 484 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑙𝐾)
6657ad2antlr 727 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑋 ∈ (Base‘𝑉))
6758, 45, 46, 47, 64, 65, 66lmodvscld 20836 . . . . . . . . . 10 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → (𝑙 · 𝑋) ∈ (Base‘𝑉))
6867adantr 480 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → (𝑙 · 𝑋) ∈ (Base‘𝑉))
6962, 68eqeltrd 2834 . . . . . . . 8 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → 𝑥 ∈ (Base‘𝑉))
7069rexlimdva2 3143 . . . . . . 7 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑋) → 𝑥 ∈ (Base‘𝑉)))
7170pm4.71rd 562 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑋) ↔ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
7271abbidv 2801 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
73 df-rab 3416 . . . . 5 {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
7472, 73eqtr4di 2788 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
7561, 74eqtrd 2770 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (𝑁‘{𝑋}) = {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
7675difeq1d 4100 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ((𝑁‘{𝑋}) ∖ {(0g𝑉)}) = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
7744, 53, 763eqtr4d 2780 1 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ((𝑁‘{𝑋}) ∖ {(0g𝑉)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wrex 3060  {crab 3415  cdif 3923  {csn 4601  {copab 5181  ccnv 5653  cima 5657  cfv 6531  (class class class)co 7405   Er wer 8716  [cec 8717  Basecbs 17228  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  LModclmod 20817  LSpanclspn 20928  LVecclvec 21060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-ec 8721  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lvec 21061
This theorem is referenced by:  prjspval2  42636
  Copyright terms: Public domain W3C validator