Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspeclsp Structured version   Visualization version   GIF version

Theorem prjspeclsp 42567
Description: The vectors equivalent to a vector 𝑋 are the nonzero vectors in the span of 𝑋. (Contributed by Steven Nguyen, 6-Jun-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjsprellsp.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjspeclsp ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ((𝑁‘{𝑋}) ∖ {(0g𝑉)}))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑉,𝑙,𝑥   𝑁,𝑙,𝑥   𝑆,𝑙   𝐵,𝑙
Allowed substitution hints:   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦)   𝑁(𝑦)   𝑉(𝑦)

Proof of Theorem prjspeclsp
StepHypRef Expression
1 prjsprel.1 . . . . . . 7 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
21cnveqi 5899 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
3 cnvopab 6169 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
42, 3eqtri 2768 . . . . 5 = {⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
54eceq2i 8805 . . . 4 [𝑋] = [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
6 df-ec 8765 . . . . . 6 [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋})
76a1i 11 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}))
8 imaopab 42224 . . . . . 6 ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}) = {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
98a1i 11 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}) = {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))})
10 df-rex 3077 . . . . . . . . 9 (∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ∃𝑦(𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
11 velsn 4664 . . . . . . . . . . . 12 (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋)
1211anbi1i 623 . . . . . . . . . . 11 ((𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
13 eleq1 2832 . . . . . . . . . . . . . 14 (𝑦 = 𝑋 → (𝑦𝐵𝑋𝐵))
1413anbi2d 629 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥𝐵𝑋𝐵)))
15 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑦 = 𝑋 → (𝑙 · 𝑦) = (𝑙 · 𝑋))
1615eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑦 = 𝑋 → (𝑥 = (𝑙 · 𝑦) ↔ 𝑥 = (𝑙 · 𝑋)))
1716rexbidv 3185 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑦) ↔ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
1814, 17anbi12d 631 . . . . . . . . . . . 12 (𝑦 = 𝑋 → (((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
1918pm5.32i 574 . . . . . . . . . . 11 ((𝑦 = 𝑋 ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2012, 19bitri 275 . . . . . . . . . 10 ((𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2120exbii 1846 . . . . . . . . 9 (∃𝑦(𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ ∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
22 19.41v 1949 . . . . . . . . . 10 (∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))) ↔ (∃𝑦 𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
23 elisset 2826 . . . . . . . . . . . 12 (𝑋𝐵 → ∃𝑦 𝑦 = 𝑋)
2423ad2antlr 726 . . . . . . . . . . 11 (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) → ∃𝑦 𝑦 = 𝑋)
2524pm4.71ri 560 . . . . . . . . . 10 (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) ↔ (∃𝑦 𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2622, 25bitr4i 278 . . . . . . . . 9 (∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
2710, 21, 263bitri 297 . . . . . . . 8 (∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
2827abbii 2812 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
29 iba 527 . . . . . . . . . 10 (𝑋𝐵 → (𝑥𝐵 ↔ (𝑥𝐵𝑋𝐵)))
3029bicomd 223 . . . . . . . . 9 (𝑋𝐵 → ((𝑥𝐵𝑋𝐵) ↔ 𝑥𝐵))
3130anbi1d 630 . . . . . . . 8 (𝑋𝐵 → (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) ↔ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
3231abbidv 2811 . . . . . . 7 (𝑋𝐵 → {𝑥 ∣ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
3328, 32eqtrid 2792 . . . . . 6 (𝑋𝐵 → {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
3433adantl 481 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
357, 9, 343eqtrd 2784 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
365, 35eqtrid 2792 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
37 df-rab 3444 . . . 4 {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
3837a1i 11 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
39 prjspertr.b . . . . 5 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
4039rabeqi 3457 . . . 4 {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)}
41 rabdif 4340 . . . . 5 ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}) = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)}
4241a1i 11 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}) = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
4340, 42eqtr4id 2799 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
4436, 38, 433eqtr2d 2786 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
45 prjspertr.s . . . . . 6 𝑆 = (Scalar‘𝑉)
46 prjspertr.x . . . . . 6 · = ( ·𝑠𝑉)
47 prjspertr.k . . . . . 6 𝐾 = (Base‘𝑆)
481, 39, 45, 46, 47prjsper 42563 . . . . 5 (𝑉 ∈ LVec → Er 𝐵)
4948adantr 480 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → Er 𝐵)
50 ercnv 8784 . . . . 5 ( Er 𝐵 = )
5150eqcomd 2746 . . . 4 ( Er 𝐵 = )
5249, 51syl 17 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → = )
5352eceq2d 8806 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = [𝑋] )
54 lveclmod 21128 . . . . 5 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
55 difss 4159 . . . . . . 7 ((Base‘𝑉) ∖ {(0g𝑉)}) ⊆ (Base‘𝑉)
5639, 55eqsstri 4043 . . . . . 6 𝐵 ⊆ (Base‘𝑉)
5756sseli 4004 . . . . 5 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
58 eqid 2740 . . . . . 6 (Base‘𝑉) = (Base‘𝑉)
59 prjsprellsp.n . . . . . 6 𝑁 = (LSpan‘𝑉)
6045, 47, 58, 46, 59lspsn 21023 . . . . 5 ((𝑉 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑉)) → (𝑁‘{𝑋}) = {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
6154, 57, 60syl2an 595 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (𝑁‘{𝑋}) = {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
62 simpr 484 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → 𝑥 = (𝑙 · 𝑋))
6354adantr 480 . . . . . . . . . . . 12 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → 𝑉 ∈ LMod)
6463adantr 480 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑉 ∈ LMod)
65 simpr 484 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑙𝐾)
6657ad2antlr 726 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑋 ∈ (Base‘𝑉))
6758, 45, 46, 47, 64, 65, 66lmodvscld 20899 . . . . . . . . . 10 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → (𝑙 · 𝑋) ∈ (Base‘𝑉))
6867adantr 480 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → (𝑙 · 𝑋) ∈ (Base‘𝑉))
6962, 68eqeltrd 2844 . . . . . . . 8 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → 𝑥 ∈ (Base‘𝑉))
7069rexlimdva2 3163 . . . . . . 7 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑋) → 𝑥 ∈ (Base‘𝑉)))
7170pm4.71rd 562 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑋) ↔ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
7271abbidv 2811 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
73 df-rab 3444 . . . . 5 {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
7472, 73eqtr4di 2798 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
7561, 74eqtrd 2780 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (𝑁‘{𝑋}) = {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
7675difeq1d 4148 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ((𝑁‘{𝑋}) ∖ {(0g𝑉)}) = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
7744, 53, 763eqtr4d 2790 1 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ((𝑁‘{𝑋}) ∖ {(0g𝑉)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wrex 3076  {crab 3443  cdif 3973  {csn 4648  {copab 5228  ccnv 5699  cima 5703  cfv 6573  (class class class)co 7448   Er wer 8760  [cec 8761  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  LModclmod 20880  LSpanclspn 20992  LVecclvec 21124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-ec 8765  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125
This theorem is referenced by:  prjspval2  42568
  Copyright terms: Public domain W3C validator