Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspeclsp Structured version   Visualization version   GIF version

Theorem prjspeclsp 40372
Description: The vectors equivalent to a vector 𝑋 are the nonzero vectors in the span of 𝑋. (Contributed by Steven Nguyen, 6-Jun-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjsprellsp.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjspeclsp ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ((𝑁‘{𝑋}) ∖ {(0g𝑉)}))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑉,𝑙,𝑥   𝑁,𝑙,𝑥   𝑆,𝑙   𝐵,𝑙
Allowed substitution hints:   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦)   𝑁(𝑦)   𝑉(𝑦)

Proof of Theorem prjspeclsp
StepHypRef Expression
1 prjsprel.1 . . . . . . 7 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
21cnveqi 5772 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
3 cnvopab 6031 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
42, 3eqtri 2766 . . . . 5 = {⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
54eceq2i 8497 . . . 4 [𝑋] = [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
6 df-ec 8458 . . . . . 6 [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋})
76a1i 11 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}))
8 imaopab 40133 . . . . . 6 ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}) = {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
98a1i 11 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}) = {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))})
10 df-rex 3069 . . . . . . . . 9 (∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ∃𝑦(𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
11 velsn 4574 . . . . . . . . . . . 12 (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋)
1211anbi1i 623 . . . . . . . . . . 11 ((𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
13 eleq1 2826 . . . . . . . . . . . . . 14 (𝑦 = 𝑋 → (𝑦𝐵𝑋𝐵))
1413anbi2d 628 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥𝐵𝑋𝐵)))
15 oveq2 7263 . . . . . . . . . . . . . . 15 (𝑦 = 𝑋 → (𝑙 · 𝑦) = (𝑙 · 𝑋))
1615eqeq2d 2749 . . . . . . . . . . . . . 14 (𝑦 = 𝑋 → (𝑥 = (𝑙 · 𝑦) ↔ 𝑥 = (𝑙 · 𝑋)))
1716rexbidv 3225 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑦) ↔ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
1814, 17anbi12d 630 . . . . . . . . . . . 12 (𝑦 = 𝑋 → (((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
1918pm5.32i 574 . . . . . . . . . . 11 ((𝑦 = 𝑋 ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2012, 19bitri 274 . . . . . . . . . 10 ((𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2120exbii 1851 . . . . . . . . 9 (∃𝑦(𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ ∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
22 19.41v 1954 . . . . . . . . . 10 (∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))) ↔ (∃𝑦 𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
23 elisset 2820 . . . . . . . . . . . 12 (𝑋𝐵 → ∃𝑦 𝑦 = 𝑋)
2423ad2antlr 723 . . . . . . . . . . 11 (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) → ∃𝑦 𝑦 = 𝑋)
2524pm4.71ri 560 . . . . . . . . . 10 (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) ↔ (∃𝑦 𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2622, 25bitr4i 277 . . . . . . . . 9 (∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
2710, 21, 263bitri 296 . . . . . . . 8 (∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
2827abbii 2809 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
29 iba 527 . . . . . . . . . 10 (𝑋𝐵 → (𝑥𝐵 ↔ (𝑥𝐵𝑋𝐵)))
3029bicomd 222 . . . . . . . . 9 (𝑋𝐵 → ((𝑥𝐵𝑋𝐵) ↔ 𝑥𝐵))
3130anbi1d 629 . . . . . . . 8 (𝑋𝐵 → (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) ↔ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
3231abbidv 2808 . . . . . . 7 (𝑋𝐵 → {𝑥 ∣ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
3328, 32syl5eq 2791 . . . . . 6 (𝑋𝐵 → {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
3433adantl 481 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
357, 9, 343eqtrd 2782 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
365, 35syl5eq 2791 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
37 df-rab 3072 . . . 4 {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
3837a1i 11 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
39 prjspertr.b . . . . 5 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
4039rabeqi 3406 . . . 4 {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)}
41 rabdif 40112 . . . . 5 ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}) = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)}
4241a1i 11 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}) = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
4340, 42eqtr4id 2798 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
4436, 38, 433eqtr2d 2784 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
45 prjspertr.s . . . . . 6 𝑆 = (Scalar‘𝑉)
46 prjspertr.x . . . . . 6 · = ( ·𝑠𝑉)
47 prjspertr.k . . . . . 6 𝐾 = (Base‘𝑆)
481, 39, 45, 46, 47prjsper 40368 . . . . 5 (𝑉 ∈ LVec → Er 𝐵)
4948adantr 480 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → Er 𝐵)
50 ercnv 8477 . . . . 5 ( Er 𝐵 = )
5150eqcomd 2744 . . . 4 ( Er 𝐵 = )
5249, 51syl 17 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → = )
5352eceq2d 8498 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = [𝑋] )
54 lveclmod 20283 . . . . 5 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
55 difss 4062 . . . . . . 7 ((Base‘𝑉) ∖ {(0g𝑉)}) ⊆ (Base‘𝑉)
5639, 55eqsstri 3951 . . . . . 6 𝐵 ⊆ (Base‘𝑉)
5756sseli 3913 . . . . 5 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
58 eqid 2738 . . . . . 6 (Base‘𝑉) = (Base‘𝑉)
59 prjsprellsp.n . . . . . 6 𝑁 = (LSpan‘𝑉)
6045, 47, 58, 46, 59lspsn 20179 . . . . 5 ((𝑉 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑉)) → (𝑁‘{𝑋}) = {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
6154, 57, 60syl2an 595 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (𝑁‘{𝑋}) = {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
62 simpr 484 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → 𝑥 = (𝑙 · 𝑋))
6354adantr 480 . . . . . . . . . . . 12 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → 𝑉 ∈ LMod)
6463adantr 480 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑉 ∈ LMod)
65 simpr 484 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑙𝐾)
6657ad2antlr 723 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑋 ∈ (Base‘𝑉))
6758, 45, 46, 47lmodvscl 20055 . . . . . . . . . . 11 ((𝑉 ∈ LMod ∧ 𝑙𝐾𝑋 ∈ (Base‘𝑉)) → (𝑙 · 𝑋) ∈ (Base‘𝑉))
6864, 65, 66, 67syl3anc 1369 . . . . . . . . . 10 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → (𝑙 · 𝑋) ∈ (Base‘𝑉))
6968adantr 480 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → (𝑙 · 𝑋) ∈ (Base‘𝑉))
7062, 69eqeltrd 2839 . . . . . . . 8 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → 𝑥 ∈ (Base‘𝑉))
7170rexlimdva2 3215 . . . . . . 7 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑋) → 𝑥 ∈ (Base‘𝑉)))
7271pm4.71rd 562 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑋) ↔ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
7372abbidv 2808 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
74 df-rab 3072 . . . . 5 {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
7573, 74eqtr4di 2797 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
7661, 75eqtrd 2778 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (𝑁‘{𝑋}) = {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
7776difeq1d 4052 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ((𝑁‘{𝑋}) ∖ {(0g𝑉)}) = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
7844, 53, 773eqtr4d 2788 1 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ((𝑁‘{𝑋}) ∖ {(0g𝑉)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wrex 3064  {crab 3067  cdif 3880  {csn 4558  {copab 5132  ccnv 5579  cima 5583  cfv 6418  (class class class)co 7255   Er wer 8453  [cec 8454  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LModclmod 20038  LSpanclspn 20148  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-ec 8458  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280
This theorem is referenced by:  prjspval2  40373
  Copyright terms: Public domain W3C validator