Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspeclsp Structured version   Visualization version   GIF version

Theorem prjspeclsp 40936
Description: The vectors equivalent to a vector 𝑋 are the nonzero vectors in the span of 𝑋. (Contributed by Steven Nguyen, 6-Jun-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjsprellsp.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjspeclsp ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ((𝑁‘{𝑋}) ∖ {(0g𝑉)}))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑉,𝑙,𝑥   𝑁,𝑙,𝑥   𝑆,𝑙   𝐵,𝑙
Allowed substitution hints:   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦)   𝑁(𝑦)   𝑉(𝑦)

Proof of Theorem prjspeclsp
StepHypRef Expression
1 prjsprel.1 . . . . . . 7 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
21cnveqi 5830 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
3 cnvopab 6091 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
42, 3eqtri 2764 . . . . 5 = {⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
54eceq2i 8689 . . . 4 [𝑋] = [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
6 df-ec 8650 . . . . . 6 [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋})
76a1i 11 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}))
8 imaopab 40655 . . . . . 6 ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}) = {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
98a1i 11 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}) = {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))})
10 df-rex 3074 . . . . . . . . 9 (∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ∃𝑦(𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
11 velsn 4602 . . . . . . . . . . . 12 (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋)
1211anbi1i 624 . . . . . . . . . . 11 ((𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
13 eleq1 2825 . . . . . . . . . . . . . 14 (𝑦 = 𝑋 → (𝑦𝐵𝑋𝐵))
1413anbi2d 629 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥𝐵𝑋𝐵)))
15 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑦 = 𝑋 → (𝑙 · 𝑦) = (𝑙 · 𝑋))
1615eqeq2d 2747 . . . . . . . . . . . . . 14 (𝑦 = 𝑋 → (𝑥 = (𝑙 · 𝑦) ↔ 𝑥 = (𝑙 · 𝑋)))
1716rexbidv 3175 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑦) ↔ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
1814, 17anbi12d 631 . . . . . . . . . . . 12 (𝑦 = 𝑋 → (((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
1918pm5.32i 575 . . . . . . . . . . 11 ((𝑦 = 𝑋 ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2012, 19bitri 274 . . . . . . . . . 10 ((𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2120exbii 1850 . . . . . . . . 9 (∃𝑦(𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ ∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
22 19.41v 1953 . . . . . . . . . 10 (∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))) ↔ (∃𝑦 𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
23 elisset 2819 . . . . . . . . . . . 12 (𝑋𝐵 → ∃𝑦 𝑦 = 𝑋)
2423ad2antlr 725 . . . . . . . . . . 11 (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) → ∃𝑦 𝑦 = 𝑋)
2524pm4.71ri 561 . . . . . . . . . 10 (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) ↔ (∃𝑦 𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2622, 25bitr4i 277 . . . . . . . . 9 (∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
2710, 21, 263bitri 296 . . . . . . . 8 (∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
2827abbii 2806 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
29 iba 528 . . . . . . . . . 10 (𝑋𝐵 → (𝑥𝐵 ↔ (𝑥𝐵𝑋𝐵)))
3029bicomd 222 . . . . . . . . 9 (𝑋𝐵 → ((𝑥𝐵𝑋𝐵) ↔ 𝑥𝐵))
3130anbi1d 630 . . . . . . . 8 (𝑋𝐵 → (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) ↔ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
3231abbidv 2805 . . . . . . 7 (𝑋𝐵 → {𝑥 ∣ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
3328, 32eqtrid 2788 . . . . . 6 (𝑋𝐵 → {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
3433adantl 482 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
357, 9, 343eqtrd 2780 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
365, 35eqtrid 2788 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
37 df-rab 3408 . . . 4 {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
3837a1i 11 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
39 prjspertr.b . . . . 5 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
4039rabeqi 3420 . . . 4 {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)}
41 rabdif 40636 . . . . 5 ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}) = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)}
4241a1i 11 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}) = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
4340, 42eqtr4id 2795 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
4436, 38, 433eqtr2d 2782 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
45 prjspertr.s . . . . . 6 𝑆 = (Scalar‘𝑉)
46 prjspertr.x . . . . . 6 · = ( ·𝑠𝑉)
47 prjspertr.k . . . . . 6 𝐾 = (Base‘𝑆)
481, 39, 45, 46, 47prjsper 40932 . . . . 5 (𝑉 ∈ LVec → Er 𝐵)
4948adantr 481 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → Er 𝐵)
50 ercnv 8669 . . . . 5 ( Er 𝐵 = )
5150eqcomd 2742 . . . 4 ( Er 𝐵 = )
5249, 51syl 17 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → = )
5352eceq2d 8690 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = [𝑋] )
54 lveclmod 20567 . . . . 5 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
55 difss 4091 . . . . . . 7 ((Base‘𝑉) ∖ {(0g𝑉)}) ⊆ (Base‘𝑉)
5639, 55eqsstri 3978 . . . . . 6 𝐵 ⊆ (Base‘𝑉)
5756sseli 3940 . . . . 5 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
58 eqid 2736 . . . . . 6 (Base‘𝑉) = (Base‘𝑉)
59 prjsprellsp.n . . . . . 6 𝑁 = (LSpan‘𝑉)
6045, 47, 58, 46, 59lspsn 20463 . . . . 5 ((𝑉 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑉)) → (𝑁‘{𝑋}) = {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
6154, 57, 60syl2an 596 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (𝑁‘{𝑋}) = {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
62 simpr 485 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → 𝑥 = (𝑙 · 𝑋))
6354adantr 481 . . . . . . . . . . . 12 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → 𝑉 ∈ LMod)
6463adantr 481 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑉 ∈ LMod)
65 simpr 485 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑙𝐾)
6657ad2antlr 725 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑋 ∈ (Base‘𝑉))
6758, 45, 46, 47lmodvscl 20339 . . . . . . . . . . 11 ((𝑉 ∈ LMod ∧ 𝑙𝐾𝑋 ∈ (Base‘𝑉)) → (𝑙 · 𝑋) ∈ (Base‘𝑉))
6864, 65, 66, 67syl3anc 1371 . . . . . . . . . 10 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → (𝑙 · 𝑋) ∈ (Base‘𝑉))
6968adantr 481 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → (𝑙 · 𝑋) ∈ (Base‘𝑉))
7062, 69eqeltrd 2838 . . . . . . . 8 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → 𝑥 ∈ (Base‘𝑉))
7170rexlimdva2 3154 . . . . . . 7 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑋) → 𝑥 ∈ (Base‘𝑉)))
7271pm4.71rd 563 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑋) ↔ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
7372abbidv 2805 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
74 df-rab 3408 . . . . 5 {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
7573, 74eqtr4di 2794 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
7661, 75eqtrd 2776 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (𝑁‘{𝑋}) = {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
7776difeq1d 4081 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ((𝑁‘{𝑋}) ∖ {(0g𝑉)}) = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
7844, 53, 773eqtr4d 2786 1 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ((𝑁‘{𝑋}) ∖ {(0g𝑉)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wrex 3073  {crab 3407  cdif 3907  {csn 4586  {copab 5167  ccnv 5632  cima 5636  cfv 6496  (class class class)co 7357   Er wer 8645  [cec 8646  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  LModclmod 20322  LSpanclspn 20432  LVecclvec 20563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-ec 8650  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564
This theorem is referenced by:  prjspval2  40937
  Copyright terms: Public domain W3C validator