Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspeclsp Structured version   Visualization version   GIF version

Theorem prjspeclsp 42585
Description: The vectors equivalent to a vector 𝑋 are the nonzero vectors in the span of 𝑋. (Contributed by Steven Nguyen, 6-Jun-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjsprellsp.n 𝑁 = (LSpan‘𝑉)
Assertion
Ref Expression
prjspeclsp ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ((𝑁‘{𝑋}) ∖ {(0g𝑉)}))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑉,𝑙,𝑥   𝑁,𝑙,𝑥   𝑆,𝑙   𝐵,𝑙
Allowed substitution hints:   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦)   𝑁(𝑦)   𝑉(𝑦)

Proof of Theorem prjspeclsp
StepHypRef Expression
1 prjsprel.1 . . . . . . 7 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
21cnveqi 5817 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
3 cnvopab 6086 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
42, 3eqtri 2752 . . . . 5 = {⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
54eceq2i 8667 . . . 4 [𝑋] = [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
6 df-ec 8627 . . . . . 6 [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋})
76a1i 11 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}))
8 imaopab 42204 . . . . . 6 ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}) = {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
98a1i 11 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ({⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}) = {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))})
10 df-rex 3054 . . . . . . . . 9 (∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ∃𝑦(𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
11 velsn 4593 . . . . . . . . . . . 12 (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋)
1211anbi1i 624 . . . . . . . . . . 11 ((𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))))
13 eleq1 2816 . . . . . . . . . . . . . 14 (𝑦 = 𝑋 → (𝑦𝐵𝑋𝐵))
1413anbi2d 630 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥𝐵𝑋𝐵)))
15 oveq2 7357 . . . . . . . . . . . . . . 15 (𝑦 = 𝑋 → (𝑙 · 𝑦) = (𝑙 · 𝑋))
1615eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑦 = 𝑋 → (𝑥 = (𝑙 · 𝑦) ↔ 𝑥 = (𝑙 · 𝑋)))
1716rexbidv 3153 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑦) ↔ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
1814, 17anbi12d 632 . . . . . . . . . . . 12 (𝑦 = 𝑋 → (((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
1918pm5.32i 574 . . . . . . . . . . 11 ((𝑦 = 𝑋 ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2012, 19bitri 275 . . . . . . . . . 10 ((𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2120exbii 1848 . . . . . . . . 9 (∃𝑦(𝑦 ∈ {𝑋} ∧ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))) ↔ ∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
22 19.41v 1949 . . . . . . . . . 10 (∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))) ↔ (∃𝑦 𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
23 elisset 2810 . . . . . . . . . . . 12 (𝑋𝐵 → ∃𝑦 𝑦 = 𝑋)
2423ad2antlr 727 . . . . . . . . . . 11 (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) → ∃𝑦 𝑦 = 𝑋)
2524pm4.71ri 560 . . . . . . . . . 10 (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) ↔ (∃𝑦 𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
2622, 25bitr4i 278 . . . . . . . . 9 (∃𝑦(𝑦 = 𝑋 ∧ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
2710, 21, 263bitri 297 . . . . . . . 8 (∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)))
2827abbii 2796 . . . . . . 7 {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
29 iba 527 . . . . . . . . . 10 (𝑋𝐵 → (𝑥𝐵 ↔ (𝑥𝐵𝑋𝐵)))
3029bicomd 223 . . . . . . . . 9 (𝑋𝐵 → ((𝑥𝐵𝑋𝐵) ↔ 𝑥𝐵))
3130anbi1d 631 . . . . . . . 8 (𝑋𝐵 → (((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)) ↔ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
3231abbidv 2795 . . . . . . 7 (𝑋𝐵 → {𝑥 ∣ ((𝑥𝐵𝑋𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
3328, 32eqtrid 2776 . . . . . 6 (𝑋𝐵 → {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
3433adantl 481 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
357, 9, 343eqtrd 2768 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋]{⟨𝑦, 𝑥⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
365, 35eqtrid 2776 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
37 df-rab 3395 . . . 4 {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
3837a1i 11 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥𝐵 ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
39 prjspertr.b . . . . 5 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
4039rabeqi 3408 . . . 4 {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)}
41 rabdif 4272 . . . . 5 ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}) = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)}
4241a1i 11 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}) = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
4340, 42eqtr4id 2783 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥𝐵 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
4436, 38, 433eqtr2d 2770 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
45 prjspertr.s . . . . . 6 𝑆 = (Scalar‘𝑉)
46 prjspertr.x . . . . . 6 · = ( ·𝑠𝑉)
47 prjspertr.k . . . . . 6 𝐾 = (Base‘𝑆)
481, 39, 45, 46, 47prjsper 42581 . . . . 5 (𝑉 ∈ LVec → Er 𝐵)
4948adantr 480 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → Er 𝐵)
50 ercnv 8646 . . . . 5 ( Er 𝐵 = )
5150eqcomd 2735 . . . 4 ( Er 𝐵 = )
5249, 51syl 17 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → = )
5352eceq2d 8668 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = [𝑋] )
54 lveclmod 21010 . . . . 5 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
55 difss 4087 . . . . . . 7 ((Base‘𝑉) ∖ {(0g𝑉)}) ⊆ (Base‘𝑉)
5639, 55eqsstri 3982 . . . . . 6 𝐵 ⊆ (Base‘𝑉)
5756sseli 3931 . . . . 5 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
58 eqid 2729 . . . . . 6 (Base‘𝑉) = (Base‘𝑉)
59 prjsprellsp.n . . . . . 6 𝑁 = (LSpan‘𝑉)
6045, 47, 58, 46, 59lspsn 20905 . . . . 5 ((𝑉 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑉)) → (𝑁‘{𝑋}) = {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
6154, 57, 60syl2an 596 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (𝑁‘{𝑋}) = {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
62 simpr 484 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → 𝑥 = (𝑙 · 𝑋))
6354adantr 480 . . . . . . . . . . . 12 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → 𝑉 ∈ LMod)
6463adantr 480 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑉 ∈ LMod)
65 simpr 484 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑙𝐾)
6657ad2antlr 727 . . . . . . . . . . 11 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → 𝑋 ∈ (Base‘𝑉))
6758, 45, 46, 47, 64, 65, 66lmodvscld 20782 . . . . . . . . . 10 (((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) → (𝑙 · 𝑋) ∈ (Base‘𝑉))
6867adantr 480 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → (𝑙 · 𝑋) ∈ (Base‘𝑉))
6962, 68eqeltrd 2828 . . . . . . . 8 ((((𝑉 ∈ LVec ∧ 𝑋𝐵) ∧ 𝑙𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → 𝑥 ∈ (Base‘𝑉))
7069rexlimdva2 3132 . . . . . . 7 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑋) → 𝑥 ∈ (Base‘𝑉)))
7170pm4.71rd 562 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑋) ↔ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))))
7271abbidv 2795 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))})
73 df-rab 3395 . . . . 5 {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋))}
7472, 73eqtr4di 2782 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → {𝑥 ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
7561, 74eqtrd 2764 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → (𝑁‘{𝑋}) = {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)})
7675difeq1d 4076 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → ((𝑁‘{𝑋}) ∖ {(0g𝑉)}) = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g𝑉)}))
7744, 53, 763eqtr4d 2774 1 ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ((𝑁‘{𝑋}) ∖ {(0g𝑉)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wrex 3053  {crab 3394  cdif 3900  {csn 4577  {copab 5154  ccnv 5618  cima 5622  cfv 6482  (class class class)co 7349   Er wer 8622  [cec 8623  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  LModclmod 20763  LSpanclspn 20874  LVecclvec 21006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-ec 8627  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007
This theorem is referenced by:  prjspval2  42586
  Copyright terms: Public domain W3C validator