Proof of Theorem prjspeclsp
| Step | Hyp | Ref
| Expression |
| 1 | | prjsprel.1 |
. . . . . . 7
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
| 2 | 1 | cnveqi 5885 |
. . . . . 6
⊢ ◡ ∼ = ◡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
| 3 | | cnvopab 6157 |
. . . . . 6
⊢ ◡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} = {〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
| 4 | 2, 3 | eqtri 2765 |
. . . . 5
⊢ ◡ ∼ = {〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
| 5 | 4 | eceq2i 8787 |
. . . 4
⊢ [𝑋]◡ ∼ = [𝑋]{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
| 6 | | df-ec 8747 |
. . . . . 6
⊢ [𝑋]{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} = ({〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}) |
| 7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → [𝑋]{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} = ({〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋})) |
| 8 | | imaopab 42270 |
. . . . . 6
⊢
({〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}) = {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
| 9 | 8 | a1i 11 |
. . . . 5
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → ({〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} “ {𝑋}) = {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))}) |
| 10 | | df-rex 3071 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
{𝑋} ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ∃𝑦(𝑦 ∈ {𝑋} ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦)))) |
| 11 | | velsn 4642 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋) |
| 12 | 11 | anbi1i 624 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ {𝑋} ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦)))) |
| 13 | | eleq1 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑋 → (𝑦 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) |
| 14 | 13 | anbi2d 630 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑋 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵))) |
| 15 | | oveq2 7439 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑋 → (𝑙 · 𝑦) = (𝑙 · 𝑋)) |
| 16 | 15 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑋 → (𝑥 = (𝑙 · 𝑦) ↔ 𝑥 = (𝑙 · 𝑋))) |
| 17 | 16 | rexbidv 3179 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑋 → (∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦) ↔ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))) |
| 18 | 14, 17 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑋 → (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)))) |
| 19 | 18 | pm5.32i 574 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝑋 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)))) |
| 20 | 12, 19 | bitri 275 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ {𝑋} ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))) ↔ (𝑦 = 𝑋 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)))) |
| 21 | 20 | exbii 1848 |
. . . . . . . . 9
⊢
(∃𝑦(𝑦 ∈ {𝑋} ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))) ↔ ∃𝑦(𝑦 = 𝑋 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)))) |
| 22 | | 19.41v 1949 |
. . . . . . . . . 10
⊢
(∃𝑦(𝑦 = 𝑋 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))) ↔ (∃𝑦 𝑦 = 𝑋 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)))) |
| 23 | | elisset 2823 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐵 → ∃𝑦 𝑦 = 𝑋) |
| 24 | 23 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)) → ∃𝑦 𝑦 = 𝑋) |
| 25 | 24 | pm4.71ri 560 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)) ↔ (∃𝑦 𝑦 = 𝑋 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)))) |
| 26 | 22, 25 | bitr4i 278 |
. . . . . . . . 9
⊢
(∃𝑦(𝑦 = 𝑋 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))) |
| 27 | 10, 21, 26 | 3bitri 297 |
. . . . . . . 8
⊢
(∃𝑦 ∈
{𝑋} ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))) |
| 28 | 27 | abbii 2809 |
. . . . . . 7
⊢ {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))} |
| 29 | | iba 527 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝐵 → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵))) |
| 30 | 29 | bicomd 223 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
| 31 | 30 | anbi1d 631 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → (((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)))) |
| 32 | 31 | abbidv 2808 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 → {𝑥 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))}) |
| 33 | 28, 32 | eqtrid 2789 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))}) |
| 34 | 33 | adantl 481 |
. . . . 5
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → {𝑥 ∣ ∃𝑦 ∈ {𝑋} ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))}) |
| 35 | 7, 9, 34 | 3eqtrd 2781 |
. . . 4
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → [𝑋]{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))}) |
| 36 | 5, 35 | eqtrid 2789 |
. . 3
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → [𝑋]◡
∼
= {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))}) |
| 37 | | df-rab 3437 |
. . . 4
⊢ {𝑥 ∈ 𝐵 ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))} |
| 38 | 37 | a1i 11 |
. . 3
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → {𝑥 ∈ 𝐵 ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))}) |
| 39 | | prjspertr.b |
. . . . 5
⊢ 𝐵 = ((Base‘𝑉) ∖
{(0g‘𝑉)}) |
| 40 | 39 | rabeqi 3450 |
. . . 4
⊢ {𝑥 ∈ 𝐵 ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)} |
| 41 | | rabdif 4321 |
. . . . 5
⊢ ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g‘𝑉)}) = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)} |
| 42 | 41 | a1i 11 |
. . . 4
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g‘𝑉)}) = {𝑥 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)}) |
| 43 | 40, 42 | eqtr4id 2796 |
. . 3
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → {𝑥 ∈ 𝐵 ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)} = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g‘𝑉)})) |
| 44 | 36, 38, 43 | 3eqtr2d 2783 |
. 2
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → [𝑋]◡
∼
= ({𝑥 ∈
(Base‘𝑉) ∣
∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g‘𝑉)})) |
| 45 | | prjspertr.s |
. . . . . 6
⊢ 𝑆 = (Scalar‘𝑉) |
| 46 | | prjspertr.x |
. . . . . 6
⊢ · = (
·𝑠 ‘𝑉) |
| 47 | | prjspertr.k |
. . . . . 6
⊢ 𝐾 = (Base‘𝑆) |
| 48 | 1, 39, 45, 46, 47 | prjsper 42618 |
. . . . 5
⊢ (𝑉 ∈ LVec → ∼ Er
𝐵) |
| 49 | 48 | adantr 480 |
. . . 4
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → ∼ Er 𝐵) |
| 50 | | ercnv 8766 |
. . . . 5
⊢ ( ∼ Er
𝐵 → ◡ ∼ = ∼
) |
| 51 | 50 | eqcomd 2743 |
. . . 4
⊢ ( ∼ Er
𝐵 → ∼ = ◡ ∼ ) |
| 52 | 49, 51 | syl 17 |
. . 3
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → ∼ = ◡ ∼ ) |
| 53 | 52 | eceq2d 8788 |
. 2
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → [𝑋] ∼ = [𝑋]◡ ∼ ) |
| 54 | | lveclmod 21105 |
. . . . 5
⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) |
| 55 | | difss 4136 |
. . . . . . 7
⊢
((Base‘𝑉)
∖ {(0g‘𝑉)}) ⊆ (Base‘𝑉) |
| 56 | 39, 55 | eqsstri 4030 |
. . . . . 6
⊢ 𝐵 ⊆ (Base‘𝑉) |
| 57 | 56 | sseli 3979 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑉)) |
| 58 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝑉) =
(Base‘𝑉) |
| 59 | | prjsprellsp.n |
. . . . . 6
⊢ 𝑁 = (LSpan‘𝑉) |
| 60 | 45, 47, 58, 46, 59 | lspsn 21000 |
. . . . 5
⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑉)) → (𝑁‘{𝑋}) = {𝑥 ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)}) |
| 61 | 54, 57, 60 | syl2an 596 |
. . . 4
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → (𝑁‘{𝑋}) = {𝑥 ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)}) |
| 62 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) ∧ 𝑙 ∈ 𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → 𝑥 = (𝑙 · 𝑋)) |
| 63 | 54 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → 𝑉 ∈ LMod) |
| 64 | 63 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) ∧ 𝑙 ∈ 𝐾) → 𝑉 ∈ LMod) |
| 65 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) ∧ 𝑙 ∈ 𝐾) → 𝑙 ∈ 𝐾) |
| 66 | 57 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) ∧ 𝑙 ∈ 𝐾) → 𝑋 ∈ (Base‘𝑉)) |
| 67 | 58, 45, 46, 47, 64, 65, 66 | lmodvscld 20877 |
. . . . . . . . . 10
⊢ (((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) ∧ 𝑙 ∈ 𝐾) → (𝑙 · 𝑋) ∈ (Base‘𝑉)) |
| 68 | 67 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) ∧ 𝑙 ∈ 𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → (𝑙 · 𝑋) ∈ (Base‘𝑉)) |
| 69 | 62, 68 | eqeltrd 2841 |
. . . . . . . 8
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) ∧ 𝑙 ∈ 𝐾) ∧ 𝑥 = (𝑙 · 𝑋)) → 𝑥 ∈ (Base‘𝑉)) |
| 70 | 69 | rexlimdva2 3157 |
. . . . . . 7
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → (∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋) → 𝑥 ∈ (Base‘𝑉))) |
| 71 | 70 | pm4.71rd 562 |
. . . . . 6
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → (∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋) ↔ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)))) |
| 72 | 71 | abbidv 2808 |
. . . . 5
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → {𝑥 ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))}) |
| 73 | | df-rab 3437 |
. . . . 5
⊢ {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∣ (𝑥 ∈ (Base‘𝑉) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋))} |
| 74 | 72, 73 | eqtr4di 2795 |
. . . 4
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → {𝑥 ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)} = {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)}) |
| 75 | 61, 74 | eqtrd 2777 |
. . 3
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → (𝑁‘{𝑋}) = {𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)}) |
| 76 | 75 | difeq1d 4125 |
. 2
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → ((𝑁‘{𝑋}) ∖ {(0g‘𝑉)}) = ({𝑥 ∈ (Base‘𝑉) ∣ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑋)} ∖ {(0g‘𝑉)})) |
| 77 | 44, 53, 76 | 3eqtr4d 2787 |
1
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → [𝑋] ∼ = ((𝑁‘{𝑋}) ∖ {(0g‘𝑉)})) |