Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeqcda | Structured version Visualization version GIF version |
Description: When 𝜓 is always true in a context, a restricted class abstraction is equal to the restricting class. Deduction form of rabeqc 3623. (Contributed by Steven Nguyen, 7-Jun-2023.) |
Ref | Expression |
---|---|
rabeqcda.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
rabeqcda | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3074 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
2 | rabeqcda.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
3 | 2 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
4 | 3 | pm4.71d 561 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
5 | 4 | bicomd 222 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ 𝑥 ∈ 𝐴)) |
6 | 5 | abbi1dv 2879 | . 2 ⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = 𝐴) |
7 | 1, 6 | eqtrid 2791 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {cab 2716 {crab 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 |
This theorem is referenced by: lrold 34056 prjcrv0 40450 mreclat 46235 |
Copyright terms: Public domain | W3C validator |