MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqcda Structured version   Visualization version   GIF version

Theorem rabeqcda 3427
Description: When 𝜓 is always true in a context, a restricted class abstraction is equal to the restricting class. Deduction form of rabeqc 3623. (Contributed by Steven Nguyen, 7-Jun-2023.)
Hypothesis
Ref Expression
rabeqcda.1 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
rabeqcda (𝜑 → {𝑥𝐴𝜓} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rabeqcda
StepHypRef Expression
1 df-rab 3074 . 2 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
2 rabeqcda.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝜓)
32ex 412 . . . . 5 (𝜑 → (𝑥𝐴𝜓))
43pm4.71d 561 . . . 4 (𝜑 → (𝑥𝐴 ↔ (𝑥𝐴𝜓)))
54bicomd 222 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ 𝑥𝐴))
65abbi1dv 2879 . 2 (𝜑 → {𝑥 ∣ (𝑥𝐴𝜓)} = 𝐴)
71, 6eqtrid 2791 1 (𝜑 → {𝑥𝐴𝜓} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  {cab 2716  {crab 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074
This theorem is referenced by:  lrold  34056  prjcrv0  40450  mreclat  46235
  Copyright terms: Public domain W3C validator