Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeqcda | Structured version Visualization version GIF version |
Description: When 𝜓 is always true in a context, a restricted class abstraction is equal to the restricting class. Deduction form of rabeqc 3627. (Contributed by Steven Nguyen, 7-Jun-2023.) |
Ref | Expression |
---|---|
rabeqcda.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
Ref | Expression |
---|---|
rabeqcda | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3287 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
2 | rabeqcda.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
3 | 2 | ex 414 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
4 | 3 | pm4.71d 563 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
5 | 4 | bicomd 222 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ 𝑥 ∈ 𝐴)) |
6 | 5 | abbi1dv 2876 | . 2 ⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = 𝐴) |
7 | 1, 6 | eqtrid 2788 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {cab 2713 {crab 3284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 |
This theorem is referenced by: lrold 34122 prjcrv0 40507 mreclat 46341 |
Copyright terms: Public domain | W3C validator |