| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqcda | Structured version Visualization version GIF version | ||
| Description: When 𝜓 is always true in a context, a restricted class abstraction is equal to the restricting class. Deduction form of rabeqc 3448. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| Ref | Expression |
|---|---|
| rabeqcda.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
| Ref | Expression |
|---|---|
| rabeqcda | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3436 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
| 2 | rabeqcda.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
| 3 | 2 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 4 | 3 | pm4.71d 561 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 5 | 4 | eqabdv 2874 | . 2 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
| 6 | 1, 5 | eqtr4id 2795 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 {crab 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 |
| This theorem is referenced by: rabeqc 3448 cmnbascntr 19824 lrold 27936 unitscyglem4 42200 prjcrv0 42648 isubgrvtxuhgr 47855 stgrnbgr0 47936 mreclat 48901 |
| Copyright terms: Public domain | W3C validator |