| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqc | Structured version Visualization version GIF version | ||
| Description: A restricted class abstraction equals the restricting class if its condition follows from the membership of the free setvar variable in the restricting class. (Contributed by AV, 20-Apr-2022.) (Proof shortened by SN, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| rabeqc.1 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| rabeqc | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqc.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴) → 𝜑) |
| 3 | 2 | rabeqcda 3406 | . 2 ⊢ (⊤ → {𝑥 ∈ 𝐴 ∣ 𝜑} = 𝐴) |
| 4 | 3 | mptru 1548 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 |
| This theorem is referenced by: bday0s 27772 2clwwlk2 30328 numclwwlk3lem2lem 30363 fply1 33521 elnanelprv 35473 ipolub0 49102 ipoglb0 49104 |
| Copyright terms: Public domain | W3C validator |