MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqc Structured version   Visualization version   GIF version

Theorem rabeqc 3443
Description: A restricted class abstraction equals the restricting class if its condition follows from the membership of the free setvar variable in the restricting class. (Contributed by AV, 20-Apr-2022.) (Proof shortened by SN, 15-Jan-2025.)
Hypothesis
Ref Expression
rabeqc.1 (𝑥𝐴𝜑)
Assertion
Ref Expression
rabeqc {𝑥𝐴𝜑} = 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabeqc
StepHypRef Expression
1 rabeqc.1 . . . 4 (𝑥𝐴𝜑)
21adantl 481 . . 3 ((⊤ ∧ 𝑥𝐴) → 𝜑)
32rabeqcda 3442 . 2 (⊤ → {𝑥𝐴𝜑} = 𝐴)
43mptru 1547 1 {𝑥𝐴𝜑} = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wtru 1541  wcel 2105  {crab 3431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432
This theorem is referenced by:  bday0s  27673  2clwwlk2  30033  numclwwlk3lem2lem  30068  fply1  33076  elnanelprv  34883  ipolub0  47778  ipoglb0  47780
  Copyright terms: Public domain W3C validator