![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqc | Structured version Visualization version GIF version |
Description: A restricted class abstraction equals the restricting class if its condition follows from the membership of the free setvar variable in the restricting class. (Contributed by AV, 20-Apr-2022.) (Proof shortened by SN, 15-Jan-2025.) |
Ref | Expression |
---|---|
rabeqc.1 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
rabeqc | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqc.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴) → 𝜑) |
3 | 2 | rabeqcda 3442 | . 2 ⊢ (⊤ → {𝑥 ∈ 𝐴 ∣ 𝜑} = 𝐴) |
4 | 3 | mptru 1547 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 {crab 3431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 |
This theorem is referenced by: bday0s 27673 2clwwlk2 30033 numclwwlk3lem2lem 30068 fply1 33076 elnanelprv 34883 ipolub0 47778 ipoglb0 47780 |
Copyright terms: Public domain | W3C validator |