Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeqc | Structured version Visualization version GIF version |
Description: A restricted class abstraction equals the restricting class if its condition follows from the membership of the free setvar variable in the restricting class. (Contributed by AV, 20-Apr-2022.) |
Ref | Expression |
---|---|
rabeqc.1 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Ref | Expression |
---|---|
rabeqc | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3072 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | abeq1 2872 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴 ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 ∈ 𝐴)) | |
3 | rabeqc.1 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
4 | 3 | pm4.71i 559 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
5 | 4 | bicomi 223 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 ∈ 𝐴) |
6 | 2, 5 | mpgbir 1803 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴 |
7 | 1, 6 | eqtri 2766 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 |
This theorem is referenced by: 2clwwlk2 28613 numclwwlk3lem2lem 28648 fply1 31569 elnanelprv 33291 bday0s 33949 ipolub0 46166 ipoglb0 46168 |
Copyright terms: Public domain | W3C validator |