MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqc Structured version   Visualization version   GIF version

Theorem rabeqc 3615
Description: A restricted class abstraction equals the restricting class if its condition follows from the membership of the free setvar variable in the restricting class. (Contributed by AV, 20-Apr-2022.)
Hypothesis
Ref Expression
rabeqc.1 (𝑥𝐴𝜑)
Assertion
Ref Expression
rabeqc {𝑥𝐴𝜑} = 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabeqc
StepHypRef Expression
1 df-rab 3072 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 abeq1 2872 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} = 𝐴 ↔ ∀𝑥((𝑥𝐴𝜑) ↔ 𝑥𝐴))
3 rabeqc.1 . . . . 5 (𝑥𝐴𝜑)
43pm4.71i 559 . . . 4 (𝑥𝐴 ↔ (𝑥𝐴𝜑))
54bicomi 223 . . 3 ((𝑥𝐴𝜑) ↔ 𝑥𝐴)
62, 5mpgbir 1803 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = 𝐴
71, 6eqtri 2766 1 {𝑥𝐴𝜑} = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  {crab 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072
This theorem is referenced by:  2clwwlk2  28613  numclwwlk3lem2lem  28648  fply1  31569  elnanelprv  33291  bday0s  33949  ipolub0  46166  ipoglb0  46168
  Copyright terms: Public domain W3C validator