MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmnbascntr Structured version   Visualization version   GIF version

Theorem cmnbascntr 19725
Description: The base set of a commutative monoid is its center. (Contributed by SN, 21-Mar-2025.)
Hypotheses
Ref Expression
cmnbascntr.b 𝐵 = (Base‘𝐺)
cmnbascntr.z 𝑍 = (Cntr‘𝐺)
Assertion
Ref Expression
cmnbascntr (𝐺 ∈ CMnd → 𝐵 = 𝑍)

Proof of Theorem cmnbascntr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnbascntr.z . . 3 𝑍 = (Cntr‘𝐺)
2 cmnbascntr.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2733 . . . 4 (Cntz‘𝐺) = (Cntz‘𝐺)
42, 3cntrval 19239 . . 3 ((Cntz‘𝐺)‘𝐵) = (Cntr‘𝐺)
5 ssid 3953 . . . 4 𝐵𝐵
6 eqid 2733 . . . . 5 (+g𝐺) = (+g𝐺)
72, 6, 3cntzval 19241 . . . 4 (𝐵𝐵 → ((Cntz‘𝐺)‘𝐵) = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)})
85, 7ax-mp 5 . . 3 ((Cntz‘𝐺)‘𝐵) = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)}
91, 4, 83eqtr2i 2762 . 2 𝑍 = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)}
102, 6cmncom 19718 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
11103expa 1118 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
1211ralrimiva 3125 . . 3 ((𝐺 ∈ CMnd ∧ 𝑥𝐵) → ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
1312rabeqcda 3407 . 2 (𝐺 ∈ CMnd → {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)} = 𝐵)
149, 13eqtr2id 2781 1 (𝐺 ∈ CMnd → 𝐵 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  wss 3898  cfv 6489  (class class class)co 7355  Basecbs 17127  +gcplusg 17168  Cntzccntz 19235  Cntrccntr 19236  CMndccmn 19700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-cntz 19237  df-cntr 19238  df-cmn 19702
This theorem is referenced by:  crngbascntr  20182
  Copyright terms: Public domain W3C validator