MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmnbascntr Structured version   Visualization version   GIF version

Theorem cmnbascntr 19791
Description: The base set of a commutative monoid is its center. (Contributed by SN, 21-Mar-2025.)
Hypotheses
Ref Expression
cmnbascntr.b 𝐵 = (Base‘𝐺)
cmnbascntr.z 𝑍 = (Cntr‘𝐺)
Assertion
Ref Expression
cmnbascntr (𝐺 ∈ CMnd → 𝐵 = 𝑍)

Proof of Theorem cmnbascntr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnbascntr.z . . 3 𝑍 = (Cntr‘𝐺)
2 cmnbascntr.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2736 . . . 4 (Cntz‘𝐺) = (Cntz‘𝐺)
42, 3cntrval 19307 . . 3 ((Cntz‘𝐺)‘𝐵) = (Cntr‘𝐺)
5 ssid 3986 . . . 4 𝐵𝐵
6 eqid 2736 . . . . 5 (+g𝐺) = (+g𝐺)
72, 6, 3cntzval 19309 . . . 4 (𝐵𝐵 → ((Cntz‘𝐺)‘𝐵) = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)})
85, 7ax-mp 5 . . 3 ((Cntz‘𝐺)‘𝐵) = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)}
91, 4, 83eqtr2i 2765 . 2 𝑍 = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)}
102, 6cmncom 19784 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
11103expa 1118 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
1211ralrimiva 3133 . . 3 ((𝐺 ∈ CMnd ∧ 𝑥𝐵) → ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
1312rabeqcda 3432 . 2 (𝐺 ∈ CMnd → {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)} = 𝐵)
149, 13eqtr2id 2784 1 (𝐺 ∈ CMnd → 𝐵 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  {crab 3420  wss 3931  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Cntzccntz 19303  Cntrccntr 19304  CMndccmn 19766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-cntz 19305  df-cntr 19306  df-cmn 19768
This theorem is referenced by:  crngbascntr  20221
  Copyright terms: Public domain W3C validator