MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmnbascntr Structured version   Visualization version   GIF version

Theorem cmnbascntr 19735
Description: The base set of a commutative monoid is its center. (Contributed by SN, 21-Mar-2025.)
Hypotheses
Ref Expression
cmnbascntr.b 𝐵 = (Base‘𝐺)
cmnbascntr.z 𝑍 = (Cntr‘𝐺)
Assertion
Ref Expression
cmnbascntr (𝐺 ∈ CMnd → 𝐵 = 𝑍)

Proof of Theorem cmnbascntr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnbascntr.z . . 3 𝑍 = (Cntr‘𝐺)
2 cmnbascntr.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2729 . . . 4 (Cntz‘𝐺) = (Cntz‘𝐺)
42, 3cntrval 19251 . . 3 ((Cntz‘𝐺)‘𝐵) = (Cntr‘𝐺)
5 ssid 3969 . . . 4 𝐵𝐵
6 eqid 2729 . . . . 5 (+g𝐺) = (+g𝐺)
72, 6, 3cntzval 19253 . . . 4 (𝐵𝐵 → ((Cntz‘𝐺)‘𝐵) = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)})
85, 7ax-mp 5 . . 3 ((Cntz‘𝐺)‘𝐵) = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)}
91, 4, 83eqtr2i 2758 . 2 𝑍 = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)}
102, 6cmncom 19728 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
11103expa 1118 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
1211ralrimiva 3125 . . 3 ((𝐺 ∈ CMnd ∧ 𝑥𝐵) → ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
1312rabeqcda 3417 . 2 (𝐺 ∈ CMnd → {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)} = 𝐵)
149, 13eqtr2id 2777 1 (𝐺 ∈ CMnd → 𝐵 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  wss 3914  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Cntzccntz 19247  Cntrccntr 19248  CMndccmn 19710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-cntz 19249  df-cntr 19250  df-cmn 19712
This theorem is referenced by:  crngbascntr  20165
  Copyright terms: Public domain W3C validator