| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmnbascntr | Structured version Visualization version GIF version | ||
| Description: The base set of a commutative monoid is its center. (Contributed by SN, 21-Mar-2025.) |
| Ref | Expression |
|---|---|
| cmnbascntr.b | ⊢ 𝐵 = (Base‘𝐺) |
| cmnbascntr.z | ⊢ 𝑍 = (Cntr‘𝐺) |
| Ref | Expression |
|---|---|
| cmnbascntr | ⊢ (𝐺 ∈ CMnd → 𝐵 = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmnbascntr.z | . . 3 ⊢ 𝑍 = (Cntr‘𝐺) | |
| 2 | cmnbascntr.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2734 | . . . 4 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 4 | 2, 3 | cntrval 19306 | . . 3 ⊢ ((Cntz‘𝐺)‘𝐵) = (Cntr‘𝐺) |
| 5 | ssid 3986 | . . . 4 ⊢ 𝐵 ⊆ 𝐵 | |
| 6 | eqid 2734 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 7 | 2, 6, 3 | cntzval 19308 | . . . 4 ⊢ (𝐵 ⊆ 𝐵 → ((Cntz‘𝐺)‘𝐵) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)}) |
| 8 | 5, 7 | ax-mp 5 | . . 3 ⊢ ((Cntz‘𝐺)‘𝐵) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)} |
| 9 | 1, 4, 8 | 3eqtr2i 2763 | . 2 ⊢ 𝑍 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)} |
| 10 | 2, 6 | cmncom 19784 | . . . . 5 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 11 | 10 | 3expa 1118 | . . . 4 ⊢ (((𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 12 | 11 | ralrimiva 3133 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 13 | 12 | rabeqcda 3431 | . 2 ⊢ (𝐺 ∈ CMnd → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)} = 𝐵) |
| 14 | 9, 13 | eqtr2id 2782 | 1 ⊢ (𝐺 ∈ CMnd → 𝐵 = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3419 ⊆ wss 3931 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 +gcplusg 17273 Cntzccntz 19302 Cntrccntr 19303 CMndccmn 19766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-cntz 19304 df-cntr 19305 df-cmn 19768 |
| This theorem is referenced by: crngbascntr 20221 |
| Copyright terms: Public domain | W3C validator |