MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmnbascntr Structured version   Visualization version   GIF version

Theorem cmnbascntr 19721
Description: The base set of a commutative monoid is its center. (Contributed by SN, 21-Mar-2025.)
Hypotheses
Ref Expression
cmnbascntr.b 𝐵 = (Base‘𝐺)
cmnbascntr.z 𝑍 = (Cntr‘𝐺)
Assertion
Ref Expression
cmnbascntr (𝐺 ∈ CMnd → 𝐵 = 𝑍)

Proof of Theorem cmnbascntr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnbascntr.z . . 3 𝑍 = (Cntr‘𝐺)
2 cmnbascntr.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2731 . . . 4 (Cntz‘𝐺) = (Cntz‘𝐺)
42, 3cntrval 19231 . . 3 ((Cntz‘𝐺)‘𝐵) = (Cntr‘𝐺)
5 ssid 4004 . . . 4 𝐵𝐵
6 eqid 2731 . . . . 5 (+g𝐺) = (+g𝐺)
72, 6, 3cntzval 19233 . . . 4 (𝐵𝐵 → ((Cntz‘𝐺)‘𝐵) = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)})
85, 7ax-mp 5 . . 3 ((Cntz‘𝐺)‘𝐵) = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)}
91, 4, 83eqtr2i 2765 . 2 𝑍 = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)}
102, 6cmncom 19714 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
11103expa 1117 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
1211ralrimiva 3145 . . 3 ((𝐺 ∈ CMnd ∧ 𝑥𝐵) → ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
1312rabeqcda 3442 . 2 (𝐺 ∈ CMnd → {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)} = 𝐵)
149, 13eqtr2id 2784 1 (𝐺 ∈ CMnd → 𝐵 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  {crab 3431  wss 3948  cfv 6543  (class class class)co 7412  Basecbs 17151  +gcplusg 17204  Cntzccntz 19227  Cntrccntr 19228  CMndccmn 19696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-cntz 19229  df-cntr 19230  df-cmn 19698
This theorem is referenced by:  crngbascntr  20156
  Copyright terms: Public domain W3C validator