| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmnbascntr | Structured version Visualization version GIF version | ||
| Description: The base set of a commutative monoid is its center. (Contributed by SN, 21-Mar-2025.) |
| Ref | Expression |
|---|---|
| cmnbascntr.b | ⊢ 𝐵 = (Base‘𝐺) |
| cmnbascntr.z | ⊢ 𝑍 = (Cntr‘𝐺) |
| Ref | Expression |
|---|---|
| cmnbascntr | ⊢ (𝐺 ∈ CMnd → 𝐵 = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmnbascntr.z | . . 3 ⊢ 𝑍 = (Cntr‘𝐺) | |
| 2 | cmnbascntr.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2731 | . . . 4 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 4 | 2, 3 | cntrval 19226 | . . 3 ⊢ ((Cntz‘𝐺)‘𝐵) = (Cntr‘𝐺) |
| 5 | ssid 3952 | . . . 4 ⊢ 𝐵 ⊆ 𝐵 | |
| 6 | eqid 2731 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 7 | 2, 6, 3 | cntzval 19228 | . . . 4 ⊢ (𝐵 ⊆ 𝐵 → ((Cntz‘𝐺)‘𝐵) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)}) |
| 8 | 5, 7 | ax-mp 5 | . . 3 ⊢ ((Cntz‘𝐺)‘𝐵) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)} |
| 9 | 1, 4, 8 | 3eqtr2i 2760 | . 2 ⊢ 𝑍 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)} |
| 10 | 2, 6 | cmncom 19705 | . . . . 5 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 11 | 10 | 3expa 1118 | . . . 4 ⊢ (((𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 12 | 11 | ralrimiva 3124 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 13 | 12 | rabeqcda 3406 | . 2 ⊢ (𝐺 ∈ CMnd → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)} = 𝐵) |
| 14 | 9, 13 | eqtr2id 2779 | 1 ⊢ (𝐺 ∈ CMnd → 𝐵 = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3897 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 Cntzccntz 19222 Cntrccntr 19223 CMndccmn 19687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-cntz 19224 df-cntr 19225 df-cmn 19689 |
| This theorem is referenced by: crngbascntr 20169 |
| Copyright terms: Public domain | W3C validator |