MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmnbascntr Structured version   Visualization version   GIF version

Theorem cmnbascntr 19711
Description: The base set of a commutative monoid is its center. (Contributed by SN, 21-Mar-2025.)
Hypotheses
Ref Expression
cmnbascntr.b 𝐵 = (Base‘𝐺)
cmnbascntr.z 𝑍 = (Cntr‘𝐺)
Assertion
Ref Expression
cmnbascntr (𝐺 ∈ CMnd → 𝐵 = 𝑍)

Proof of Theorem cmnbascntr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnbascntr.z . . 3 𝑍 = (Cntr‘𝐺)
2 cmnbascntr.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2729 . . . 4 (Cntz‘𝐺) = (Cntz‘𝐺)
42, 3cntrval 19227 . . 3 ((Cntz‘𝐺)‘𝐵) = (Cntr‘𝐺)
5 ssid 3966 . . . 4 𝐵𝐵
6 eqid 2729 . . . . 5 (+g𝐺) = (+g𝐺)
72, 6, 3cntzval 19229 . . . 4 (𝐵𝐵 → ((Cntz‘𝐺)‘𝐵) = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)})
85, 7ax-mp 5 . . 3 ((Cntz‘𝐺)‘𝐵) = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)}
91, 4, 83eqtr2i 2758 . 2 𝑍 = {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)}
102, 6cmncom 19704 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
11103expa 1118 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
1211ralrimiva 3125 . . 3 ((𝐺 ∈ CMnd ∧ 𝑥𝐵) → ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
1312rabeqcda 3414 . 2 (𝐺 ∈ CMnd → {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)} = 𝐵)
149, 13eqtr2id 2777 1 (𝐺 ∈ CMnd → 𝐵 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Cntzccntz 19223  Cntrccntr 19224  CMndccmn 19686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-cntz 19225  df-cntr 19226  df-cmn 19688
This theorem is referenced by:  crngbascntr  20141
  Copyright terms: Public domain W3C validator