| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mreclat | Structured version Visualization version GIF version | ||
| Description: A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| mreclatGOOD.i | ⊢ 𝐼 = (toInc‘𝐶) |
| Ref | Expression |
|---|---|
| mreclat | ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclatGOOD.i | . . 3 ⊢ 𝐼 = (toInc‘𝐶) | |
| 2 | 1 | ipobas 18497 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼)) |
| 3 | eqidd 2731 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → (lub‘𝐼) = (lub‘𝐼)) | |
| 4 | eqidd 2731 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → (glb‘𝐼) = (glb‘𝐼)) | |
| 5 | 1 | ipopos 18502 | . . 3 ⊢ 𝐼 ∈ Poset |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ Poset) |
| 7 | mreuniss 48892 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ 𝑥 ⊆ 𝑋) | |
| 8 | eqid 2730 | . . . . 5 ⊢ (mrCls‘𝐶) = (mrCls‘𝐶) | |
| 9 | 8 | mrccl 17579 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑥 ⊆ 𝑋) → ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶) |
| 10 | 7, 9 | syldan 591 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶) |
| 11 | simpl 482 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝐶 ∈ (Moore‘𝑋)) | |
| 12 | simpr 484 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ⊆ 𝐶) | |
| 13 | eqidd 2731 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (lub‘𝐼) = (lub‘𝐼)) | |
| 14 | 8 | mrcval 17578 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑥 ⊆ 𝑋) → ((mrCls‘𝐶)‘∪ 𝑥) = ∩ {𝑦 ∈ 𝐶 ∣ ∪ 𝑥 ⊆ 𝑦}) |
| 15 | 7, 14 | syldan 591 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ((mrCls‘𝐶)‘∪ 𝑥) = ∩ {𝑦 ∈ 𝐶 ∣ ∪ 𝑥 ⊆ 𝑦}) |
| 16 | 1, 11, 12, 13, 15 | ipolubdm 48979 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (𝑥 ∈ dom (lub‘𝐼) ↔ ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶)) |
| 17 | 10, 16 | mpbird 257 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ∈ dom (lub‘𝐼)) |
| 18 | ssv 3974 | . . . . . . . . 9 ⊢ 𝑦 ⊆ V | |
| 19 | int0 4929 | . . . . . . . . 9 ⊢ ∩ ∅ = V | |
| 20 | 18, 19 | sseqtrri 3999 | . . . . . . . 8 ⊢ 𝑦 ⊆ ∩ ∅ |
| 21 | simplr 768 | . . . . . . . . 9 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → 𝑥 = ∅) | |
| 22 | 21 | inteqd 4918 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → ∩ 𝑥 = ∩ ∅) |
| 23 | 20, 22 | sseqtrrid 3993 | . . . . . . 7 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → 𝑦 ⊆ ∩ 𝑥) |
| 24 | 23 | rabeqcda 3420 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = 𝐶) |
| 25 | 24 | unieqd 4887 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∪ 𝐶) |
| 26 | mreuni 17568 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) | |
| 27 | mre1cl 17562 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
| 28 | 26, 27 | eqeltrd 2829 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 ∈ 𝐶) |
| 29 | 28 | ad2antrr 726 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ 𝐶 ∈ 𝐶) |
| 30 | 25, 29 | eqeltrd 2829 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
| 31 | mreintcl 17563 | . . . . . . 7 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ 𝐶) | |
| 32 | unimax 4911 | . . . . . . 7 ⊢ (∩ 𝑥 ∈ 𝐶 → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∩ 𝑥) | |
| 33 | 31, 32 | syl 17 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∩ 𝑥) |
| 34 | 33, 31 | eqeltrd 2829 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
| 35 | 34 | 3expa 1118 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
| 36 | 30, 35 | pm2.61dane 3013 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
| 37 | eqidd 2731 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (glb‘𝐼) = (glb‘𝐼)) | |
| 38 | eqidd 2731 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥}) | |
| 39 | 1, 11, 12, 37, 38 | ipoglbdm 48982 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (𝑥 ∈ dom (glb‘𝐼) ↔ ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶)) |
| 40 | 36, 39 | mpbird 257 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ∈ dom (glb‘𝐼)) |
| 41 | 2, 3, 4, 6, 17, 40 | isclatd 48975 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 ∪ cuni 4874 ∩ cint 4913 dom cdm 5641 ‘cfv 6514 Moorecmre 17550 mrClscmrc 17551 Posetcpo 18275 lubclub 18277 glbcglb 18278 CLatccla 18464 toInccipo 18493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-tset 17246 df-ple 17247 df-ocomp 17248 df-mre 17554 df-mrc 17555 df-proset 18262 df-poset 18281 df-lub 18312 df-glb 18313 df-clat 18465 df-ipo 18494 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |