Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mreclat | Structured version Visualization version GIF version |
Description: A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
Ref | Expression |
---|---|
mreclatGOOD.i | ⊢ 𝐼 = (toInc‘𝐶) |
Ref | Expression |
---|---|
mreclat | ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreclatGOOD.i | . . 3 ⊢ 𝐼 = (toInc‘𝐶) | |
2 | 1 | ipobas 18164 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼)) |
3 | eqidd 2739 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → (lub‘𝐼) = (lub‘𝐼)) | |
4 | eqidd 2739 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → (glb‘𝐼) = (glb‘𝐼)) | |
5 | 1 | ipopos 18169 | . . 3 ⊢ 𝐼 ∈ Poset |
6 | 5 | a1i 11 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ Poset) |
7 | mreuniss 46081 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ 𝑥 ⊆ 𝑋) | |
8 | eqid 2738 | . . . . 5 ⊢ (mrCls‘𝐶) = (mrCls‘𝐶) | |
9 | 8 | mrccl 17237 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑥 ⊆ 𝑋) → ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶) |
10 | 7, 9 | syldan 590 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶) |
11 | simpl 482 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝐶 ∈ (Moore‘𝑋)) | |
12 | simpr 484 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ⊆ 𝐶) | |
13 | eqidd 2739 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (lub‘𝐼) = (lub‘𝐼)) | |
14 | 8 | mrcval 17236 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑥 ⊆ 𝑋) → ((mrCls‘𝐶)‘∪ 𝑥) = ∩ {𝑦 ∈ 𝐶 ∣ ∪ 𝑥 ⊆ 𝑦}) |
15 | 7, 14 | syldan 590 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ((mrCls‘𝐶)‘∪ 𝑥) = ∩ {𝑦 ∈ 𝐶 ∣ ∪ 𝑥 ⊆ 𝑦}) |
16 | 1, 11, 12, 13, 15 | ipolubdm 46161 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (𝑥 ∈ dom (lub‘𝐼) ↔ ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶)) |
17 | 10, 16 | mpbird 256 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ∈ dom (lub‘𝐼)) |
18 | ssv 3941 | . . . . . . . . 9 ⊢ 𝑦 ⊆ V | |
19 | int0 4890 | . . . . . . . . 9 ⊢ ∩ ∅ = V | |
20 | 18, 19 | sseqtrri 3954 | . . . . . . . 8 ⊢ 𝑦 ⊆ ∩ ∅ |
21 | simplr 765 | . . . . . . . . 9 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → 𝑥 = ∅) | |
22 | 21 | inteqd 4881 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → ∩ 𝑥 = ∩ ∅) |
23 | 20, 22 | sseqtrrid 3970 | . . . . . . 7 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → 𝑦 ⊆ ∩ 𝑥) |
24 | 23 | rabeqcda 3419 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = 𝐶) |
25 | 24 | unieqd 4850 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∪ 𝐶) |
26 | mreuni 17226 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) | |
27 | mre1cl 17220 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
28 | 26, 27 | eqeltrd 2839 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 ∈ 𝐶) |
29 | 28 | ad2antrr 722 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ 𝐶 ∈ 𝐶) |
30 | 25, 29 | eqeltrd 2839 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
31 | mreintcl 17221 | . . . . . . 7 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ 𝐶) | |
32 | unimax 4874 | . . . . . . 7 ⊢ (∩ 𝑥 ∈ 𝐶 → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∩ 𝑥) | |
33 | 31, 32 | syl 17 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∩ 𝑥) |
34 | 33, 31 | eqeltrd 2839 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
35 | 34 | 3expa 1116 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
36 | 30, 35 | pm2.61dane 3031 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
37 | eqidd 2739 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (glb‘𝐼) = (glb‘𝐼)) | |
38 | eqidd 2739 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥}) | |
39 | 1, 11, 12, 37, 38 | ipoglbdm 46164 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (𝑥 ∈ dom (glb‘𝐼) ↔ ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶)) |
40 | 36, 39 | mpbird 256 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ∈ dom (glb‘𝐼)) |
41 | 2, 3, 4, 6, 17, 40 | isclatd 46157 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 ∩ cint 4876 dom cdm 5580 ‘cfv 6418 Moorecmre 17208 mrClscmrc 17209 Posetcpo 17940 lubclub 17942 glbcglb 17943 CLatccla 18131 toInccipo 18160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-tset 16907 df-ple 16908 df-ocomp 16909 df-mre 17212 df-mrc 17213 df-proset 17928 df-poset 17946 df-lub 17979 df-glb 17980 df-clat 18132 df-ipo 18161 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |