Step | Hyp | Ref
| Expression |
1 | | mreclatGOOD.i |
. . 3
β’ πΌ = (toIncβπΆ) |
2 | 1 | ipobas 18480 |
. 2
β’ (πΆ β (Mooreβπ) β πΆ = (BaseβπΌ)) |
3 | | eqidd 2733 |
. 2
β’ (πΆ β (Mooreβπ) β (lubβπΌ) = (lubβπΌ)) |
4 | | eqidd 2733 |
. 2
β’ (πΆ β (Mooreβπ) β (glbβπΌ) = (glbβπΌ)) |
5 | 1 | ipopos 18485 |
. . 3
β’ πΌ β Poset |
6 | 5 | a1i 11 |
. 2
β’ (πΆ β (Mooreβπ) β πΌ β Poset) |
7 | | mreuniss 47485 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β βͺ π₯ β π) |
8 | | eqid 2732 |
. . . . 5
β’
(mrClsβπΆ) =
(mrClsβπΆ) |
9 | 8 | mrccl 17551 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ βͺ π₯
β π) β
((mrClsβπΆ)ββͺ π₯) β πΆ) |
10 | 7, 9 | syldan 591 |
. . 3
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β ((mrClsβπΆ)ββͺ π₯) β πΆ) |
11 | | simpl 483 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β πΆ β (Mooreβπ)) |
12 | | simpr 485 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β π₯ β πΆ) |
13 | | eqidd 2733 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β (lubβπΌ) = (lubβπΌ)) |
14 | 8 | mrcval 17550 |
. . . . 5
β’ ((πΆ β (Mooreβπ) β§ βͺ π₯
β π) β
((mrClsβπΆ)ββͺ π₯) = β©
{π¦ β πΆ β£ βͺ π₯ β π¦}) |
15 | 7, 14 | syldan 591 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β ((mrClsβπΆ)ββͺ π₯) = β©
{π¦ β πΆ β£ βͺ π₯ β π¦}) |
16 | 1, 11, 12, 13, 15 | ipolubdm 47565 |
. . 3
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β (π₯ β dom (lubβπΌ) β ((mrClsβπΆ)ββͺ π₯) β πΆ)) |
17 | 10, 16 | mpbird 256 |
. 2
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β π₯ β dom (lubβπΌ)) |
18 | | ssv 4005 |
. . . . . . . . 9
β’ π¦ β V |
19 | | int0 4965 |
. . . . . . . . 9
β’ β© β
= V |
20 | 18, 19 | sseqtrri 4018 |
. . . . . . . 8
β’ π¦ β β© β
|
21 | | simplr 767 |
. . . . . . . . 9
β’ ((((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ = β
) β§ π¦ β πΆ) β π₯ = β
) |
22 | 21 | inteqd 4954 |
. . . . . . . 8
β’ ((((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ = β
) β§ π¦ β πΆ) β β© π₯ = β©
β
) |
23 | 20, 22 | sseqtrrid 4034 |
. . . . . . 7
β’ ((((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ = β
) β§ π¦ β πΆ) β π¦ β β© π₯) |
24 | 23 | rabeqcda 3443 |
. . . . . 6
β’ (((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ = β
) β {π¦ β πΆ β£ π¦ β β© π₯} = πΆ) |
25 | 24 | unieqd 4921 |
. . . . 5
β’ (((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ = β
) β βͺ {π¦
β πΆ β£ π¦ β β© π₯} =
βͺ πΆ) |
26 | | mreuni 17540 |
. . . . . . 7
β’ (πΆ β (Mooreβπ) β βͺ πΆ =
π) |
27 | | mre1cl 17534 |
. . . . . . 7
β’ (πΆ β (Mooreβπ) β π β πΆ) |
28 | 26, 27 | eqeltrd 2833 |
. . . . . 6
β’ (πΆ β (Mooreβπ) β βͺ πΆ
β πΆ) |
29 | 28 | ad2antrr 724 |
. . . . 5
β’ (((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ = β
) β βͺ πΆ
β πΆ) |
30 | 25, 29 | eqeltrd 2833 |
. . . 4
β’ (((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ = β
) β βͺ {π¦
β πΆ β£ π¦ β β© π₯}
β πΆ) |
31 | | mreintcl 17535 |
. . . . . . 7
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ β§ π₯ β β
) β β© π₯
β πΆ) |
32 | | unimax 4947 |
. . . . . . 7
β’ (β© π₯
β πΆ β βͺ {π¦
β πΆ β£ π¦ β β© π₯} =
β© π₯) |
33 | 31, 32 | syl 17 |
. . . . . 6
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ β§ π₯ β β
) β βͺ {π¦
β πΆ β£ π¦ β β© π₯} =
β© π₯) |
34 | 33, 31 | eqeltrd 2833 |
. . . . 5
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ β§ π₯ β β
) β βͺ {π¦
β πΆ β£ π¦ β β© π₯}
β πΆ) |
35 | 34 | 3expa 1118 |
. . . 4
β’ (((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ β β
) β βͺ {π¦
β πΆ β£ π¦ β β© π₯}
β πΆ) |
36 | 30, 35 | pm2.61dane 3029 |
. . 3
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β βͺ {π¦ β πΆ β£ π¦ β β© π₯} β πΆ) |
37 | | eqidd 2733 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β (glbβπΌ) = (glbβπΌ)) |
38 | | eqidd 2733 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β βͺ {π¦ β πΆ β£ π¦ β β© π₯} = βͺ
{π¦ β πΆ β£ π¦ β β© π₯}) |
39 | 1, 11, 12, 37, 38 | ipoglbdm 47568 |
. . 3
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β (π₯ β dom (glbβπΌ) β βͺ {π¦ β πΆ β£ π¦ β β© π₯} β πΆ)) |
40 | 36, 39 | mpbird 256 |
. 2
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β π₯ β dom (glbβπΌ)) |
41 | 2, 3, 4, 6, 17, 40 | isclatd 47561 |
1
β’ (πΆ β (Mooreβπ) β πΌ β CLat) |