Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mreclat | Structured version Visualization version GIF version |
Description: A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
Ref | Expression |
---|---|
mreclatGOOD.i | ⊢ 𝐼 = (toInc‘𝐶) |
Ref | Expression |
---|---|
mreclat | ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreclatGOOD.i | . . 3 ⊢ 𝐼 = (toInc‘𝐶) | |
2 | 1 | ipobas 18247 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼)) |
3 | eqidd 2741 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → (lub‘𝐼) = (lub‘𝐼)) | |
4 | eqidd 2741 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → (glb‘𝐼) = (glb‘𝐼)) | |
5 | 1 | ipopos 18252 | . . 3 ⊢ 𝐼 ∈ Poset |
6 | 5 | a1i 11 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ Poset) |
7 | mreuniss 46162 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ 𝑥 ⊆ 𝑋) | |
8 | eqid 2740 | . . . . 5 ⊢ (mrCls‘𝐶) = (mrCls‘𝐶) | |
9 | 8 | mrccl 17318 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑥 ⊆ 𝑋) → ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶) |
10 | 7, 9 | syldan 591 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶) |
11 | simpl 483 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝐶 ∈ (Moore‘𝑋)) | |
12 | simpr 485 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ⊆ 𝐶) | |
13 | eqidd 2741 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (lub‘𝐼) = (lub‘𝐼)) | |
14 | 8 | mrcval 17317 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑥 ⊆ 𝑋) → ((mrCls‘𝐶)‘∪ 𝑥) = ∩ {𝑦 ∈ 𝐶 ∣ ∪ 𝑥 ⊆ 𝑦}) |
15 | 7, 14 | syldan 591 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ((mrCls‘𝐶)‘∪ 𝑥) = ∩ {𝑦 ∈ 𝐶 ∣ ∪ 𝑥 ⊆ 𝑦}) |
16 | 1, 11, 12, 13, 15 | ipolubdm 46242 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (𝑥 ∈ dom (lub‘𝐼) ↔ ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶)) |
17 | 10, 16 | mpbird 256 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ∈ dom (lub‘𝐼)) |
18 | ssv 3950 | . . . . . . . . 9 ⊢ 𝑦 ⊆ V | |
19 | int0 4899 | . . . . . . . . 9 ⊢ ∩ ∅ = V | |
20 | 18, 19 | sseqtrri 3963 | . . . . . . . 8 ⊢ 𝑦 ⊆ ∩ ∅ |
21 | simplr 766 | . . . . . . . . 9 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → 𝑥 = ∅) | |
22 | 21 | inteqd 4890 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → ∩ 𝑥 = ∩ ∅) |
23 | 20, 22 | sseqtrrid 3979 | . . . . . . 7 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → 𝑦 ⊆ ∩ 𝑥) |
24 | 23 | rabeqcda 3428 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = 𝐶) |
25 | 24 | unieqd 4859 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∪ 𝐶) |
26 | mreuni 17307 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) | |
27 | mre1cl 17301 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
28 | 26, 27 | eqeltrd 2841 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 ∈ 𝐶) |
29 | 28 | ad2antrr 723 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ 𝐶 ∈ 𝐶) |
30 | 25, 29 | eqeltrd 2841 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
31 | mreintcl 17302 | . . . . . . 7 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ 𝐶) | |
32 | unimax 4883 | . . . . . . 7 ⊢ (∩ 𝑥 ∈ 𝐶 → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∩ 𝑥) | |
33 | 31, 32 | syl 17 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∩ 𝑥) |
34 | 33, 31 | eqeltrd 2841 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
35 | 34 | 3expa 1117 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
36 | 30, 35 | pm2.61dane 3034 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
37 | eqidd 2741 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (glb‘𝐼) = (glb‘𝐼)) | |
38 | eqidd 2741 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥}) | |
39 | 1, 11, 12, 37, 38 | ipoglbdm 46245 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (𝑥 ∈ dom (glb‘𝐼) ↔ ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶)) |
40 | 36, 39 | mpbird 256 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ∈ dom (glb‘𝐼)) |
41 | 2, 3, 4, 6, 17, 40 | isclatd 46238 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 {crab 3070 Vcvv 3431 ⊆ wss 3892 ∅c0 4262 ∪ cuni 4845 ∩ cint 4885 dom cdm 5590 ‘cfv 6432 Moorecmre 17289 mrClscmrc 17290 Posetcpo 18023 lubclub 18025 glbcglb 18026 CLatccla 18214 toInccipo 18243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-fz 13239 df-struct 16846 df-slot 16881 df-ndx 16893 df-base 16911 df-tset 16979 df-ple 16980 df-ocomp 16981 df-mre 17293 df-mrc 17294 df-proset 18011 df-poset 18029 df-lub 18062 df-glb 18063 df-clat 18215 df-ipo 18244 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |