Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mreclat Structured version   Visualization version   GIF version

Theorem mreclat 46252
Description: A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.)
Hypothesis
Ref Expression
mreclatGOOD.i 𝐼 = (toInc‘𝐶)
Assertion
Ref Expression
mreclat (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat)

Proof of Theorem mreclat
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mreclatGOOD.i . . 3 𝐼 = (toInc‘𝐶)
21ipobas 18247 . 2 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼))
3 eqidd 2741 . 2 (𝐶 ∈ (Moore‘𝑋) → (lub‘𝐼) = (lub‘𝐼))
4 eqidd 2741 . 2 (𝐶 ∈ (Moore‘𝑋) → (glb‘𝐼) = (glb‘𝐼))
51ipopos 18252 . . 3 𝐼 ∈ Poset
65a1i 11 . 2 (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ Poset)
7 mreuniss 46162 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → 𝑥𝑋)
8 eqid 2740 . . . . 5 (mrCls‘𝐶) = (mrCls‘𝐶)
98mrccl 17318 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝑋) → ((mrCls‘𝐶)‘ 𝑥) ∈ 𝐶)
107, 9syldan 591 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → ((mrCls‘𝐶)‘ 𝑥) ∈ 𝐶)
11 simpl 483 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → 𝐶 ∈ (Moore‘𝑋))
12 simpr 485 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → 𝑥𝐶)
13 eqidd 2741 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → (lub‘𝐼) = (lub‘𝐼))
148mrcval 17317 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝑋) → ((mrCls‘𝐶)‘ 𝑥) = {𝑦𝐶 𝑥𝑦})
157, 14syldan 591 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → ((mrCls‘𝐶)‘ 𝑥) = {𝑦𝐶 𝑥𝑦})
161, 11, 12, 13, 15ipolubdm 46242 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → (𝑥 ∈ dom (lub‘𝐼) ↔ ((mrCls‘𝐶)‘ 𝑥) ∈ 𝐶))
1710, 16mpbird 256 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → 𝑥 ∈ dom (lub‘𝐼))
18 ssv 3950 . . . . . . . . 9 𝑦 ⊆ V
19 int0 4899 . . . . . . . . 9 ∅ = V
2018, 19sseqtrri 3963 . . . . . . . 8 𝑦
21 simplr 766 . . . . . . . . 9 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) ∧ 𝑦𝐶) → 𝑥 = ∅)
2221inteqd 4890 . . . . . . . 8 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) ∧ 𝑦𝐶) → 𝑥 = ∅)
2320, 22sseqtrrid 3979 . . . . . . 7 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) ∧ 𝑦𝐶) → 𝑦 𝑥)
2423rabeqcda 3428 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) → {𝑦𝐶𝑦 𝑥} = 𝐶)
2524unieqd 4859 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) → {𝑦𝐶𝑦 𝑥} = 𝐶)
26 mreuni 17307 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
27 mre1cl 17301 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
2826, 27eqeltrd 2841 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → 𝐶𝐶)
2928ad2antrr 723 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) → 𝐶𝐶)
3025, 29eqeltrd 2841 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) → {𝑦𝐶𝑦 𝑥} ∈ 𝐶)
31 mreintcl 17302 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
32 unimax 4883 . . . . . . 7 ( 𝑥𝐶 {𝑦𝐶𝑦 𝑥} = 𝑥)
3331, 32syl 17 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑥 ≠ ∅) → {𝑦𝐶𝑦 𝑥} = 𝑥)
3433, 31eqeltrd 2841 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑥 ≠ ∅) → {𝑦𝐶𝑦 𝑥} ∈ 𝐶)
35343expa 1117 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 ≠ ∅) → {𝑦𝐶𝑦 𝑥} ∈ 𝐶)
3630, 35pm2.61dane 3034 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → {𝑦𝐶𝑦 𝑥} ∈ 𝐶)
37 eqidd 2741 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → (glb‘𝐼) = (glb‘𝐼))
38 eqidd 2741 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → {𝑦𝐶𝑦 𝑥} = {𝑦𝐶𝑦 𝑥})
391, 11, 12, 37, 38ipoglbdm 46245 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → (𝑥 ∈ dom (glb‘𝐼) ↔ {𝑦𝐶𝑦 𝑥} ∈ 𝐶))
4036, 39mpbird 256 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → 𝑥 ∈ dom (glb‘𝐼))
412, 3, 4, 6, 17, 40isclatd 46238 1 (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  {crab 3070  Vcvv 3431  wss 3892  c0 4262   cuni 4845   cint 4885  dom cdm 5590  cfv 6432  Moorecmre 17289  mrClscmrc 17290  Posetcpo 18023  lubclub 18025  glbcglb 18026  CLatccla 18214  toInccipo 18243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-fz 13239  df-struct 16846  df-slot 16881  df-ndx 16893  df-base 16911  df-tset 16979  df-ple 16980  df-ocomp 16981  df-mre 17293  df-mrc 17294  df-proset 18011  df-poset 18029  df-lub 18062  df-glb 18063  df-clat 18215  df-ipo 18244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator