Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mreclat Structured version   Visualization version   GIF version

Theorem mreclat 48938
Description: A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.)
Hypothesis
Ref Expression
mreclatGOOD.i 𝐼 = (toInc‘𝐶)
Assertion
Ref Expression
mreclat (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat)

Proof of Theorem mreclat
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mreclatGOOD.i . . 3 𝐼 = (toInc‘𝐶)
21ipobas 18546 . 2 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼))
3 eqidd 2737 . 2 (𝐶 ∈ (Moore‘𝑋) → (lub‘𝐼) = (lub‘𝐼))
4 eqidd 2737 . 2 (𝐶 ∈ (Moore‘𝑋) → (glb‘𝐼) = (glb‘𝐼))
51ipopos 18551 . . 3 𝐼 ∈ Poset
65a1i 11 . 2 (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ Poset)
7 mreuniss 48841 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → 𝑥𝑋)
8 eqid 2736 . . . . 5 (mrCls‘𝐶) = (mrCls‘𝐶)
98mrccl 17628 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝑋) → ((mrCls‘𝐶)‘ 𝑥) ∈ 𝐶)
107, 9syldan 591 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → ((mrCls‘𝐶)‘ 𝑥) ∈ 𝐶)
11 simpl 482 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → 𝐶 ∈ (Moore‘𝑋))
12 simpr 484 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → 𝑥𝐶)
13 eqidd 2737 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → (lub‘𝐼) = (lub‘𝐼))
148mrcval 17627 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝑋) → ((mrCls‘𝐶)‘ 𝑥) = {𝑦𝐶 𝑥𝑦})
157, 14syldan 591 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → ((mrCls‘𝐶)‘ 𝑥) = {𝑦𝐶 𝑥𝑦})
161, 11, 12, 13, 15ipolubdm 48928 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → (𝑥 ∈ dom (lub‘𝐼) ↔ ((mrCls‘𝐶)‘ 𝑥) ∈ 𝐶))
1710, 16mpbird 257 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → 𝑥 ∈ dom (lub‘𝐼))
18 ssv 3988 . . . . . . . . 9 𝑦 ⊆ V
19 int0 4943 . . . . . . . . 9 ∅ = V
2018, 19sseqtrri 4013 . . . . . . . 8 𝑦
21 simplr 768 . . . . . . . . 9 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) ∧ 𝑦𝐶) → 𝑥 = ∅)
2221inteqd 4932 . . . . . . . 8 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) ∧ 𝑦𝐶) → 𝑥 = ∅)
2320, 22sseqtrrid 4007 . . . . . . 7 ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) ∧ 𝑦𝐶) → 𝑦 𝑥)
2423rabeqcda 3432 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) → {𝑦𝐶𝑦 𝑥} = 𝐶)
2524unieqd 4901 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) → {𝑦𝐶𝑦 𝑥} = 𝐶)
26 mreuni 17617 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
27 mre1cl 17611 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
2826, 27eqeltrd 2835 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → 𝐶𝐶)
2928ad2antrr 726 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) → 𝐶𝐶)
3025, 29eqeltrd 2835 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 = ∅) → {𝑦𝐶𝑦 𝑥} ∈ 𝐶)
31 mreintcl 17612 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
32 unimax 4925 . . . . . . 7 ( 𝑥𝐶 {𝑦𝐶𝑦 𝑥} = 𝑥)
3331, 32syl 17 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑥 ≠ ∅) → {𝑦𝐶𝑦 𝑥} = 𝑥)
3433, 31eqeltrd 2835 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶𝑥 ≠ ∅) → {𝑦𝐶𝑦 𝑥} ∈ 𝐶)
35343expa 1118 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) ∧ 𝑥 ≠ ∅) → {𝑦𝐶𝑦 𝑥} ∈ 𝐶)
3630, 35pm2.61dane 3020 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → {𝑦𝐶𝑦 𝑥} ∈ 𝐶)
37 eqidd 2737 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → (glb‘𝐼) = (glb‘𝐼))
38 eqidd 2737 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → {𝑦𝐶𝑦 𝑥} = {𝑦𝐶𝑦 𝑥})
391, 11, 12, 37, 38ipoglbdm 48931 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → (𝑥 ∈ dom (glb‘𝐼) ↔ {𝑦𝐶𝑦 𝑥} ∈ 𝐶))
4036, 39mpbird 257 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥𝐶) → 𝑥 ∈ dom (glb‘𝐼))
412, 3, 4, 6, 17, 40isclatd 48924 1 (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  {crab 3420  Vcvv 3464  wss 3931  c0 4313   cuni 4888   cint 4927  dom cdm 5659  cfv 6536  Moorecmre 17599  mrClscmrc 17600  Posetcpo 18324  lubclub 18326  glbcglb 18327  CLatccla 18513  toInccipo 18542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-tset 17295  df-ple 17296  df-ocomp 17297  df-mre 17603  df-mrc 17604  df-proset 18311  df-poset 18330  df-lub 18361  df-glb 18362  df-clat 18514  df-ipo 18543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator