| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mreclat | Structured version Visualization version GIF version | ||
| Description: A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| mreclatGOOD.i | ⊢ 𝐼 = (toInc‘𝐶) |
| Ref | Expression |
|---|---|
| mreclat | ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclatGOOD.i | . . 3 ⊢ 𝐼 = (toInc‘𝐶) | |
| 2 | 1 | ipobas 18546 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼)) |
| 3 | eqidd 2737 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → (lub‘𝐼) = (lub‘𝐼)) | |
| 4 | eqidd 2737 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → (glb‘𝐼) = (glb‘𝐼)) | |
| 5 | 1 | ipopos 18551 | . . 3 ⊢ 𝐼 ∈ Poset |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ Poset) |
| 7 | mreuniss 48841 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ 𝑥 ⊆ 𝑋) | |
| 8 | eqid 2736 | . . . . 5 ⊢ (mrCls‘𝐶) = (mrCls‘𝐶) | |
| 9 | 8 | mrccl 17628 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑥 ⊆ 𝑋) → ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶) |
| 10 | 7, 9 | syldan 591 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶) |
| 11 | simpl 482 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝐶 ∈ (Moore‘𝑋)) | |
| 12 | simpr 484 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ⊆ 𝐶) | |
| 13 | eqidd 2737 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (lub‘𝐼) = (lub‘𝐼)) | |
| 14 | 8 | mrcval 17627 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑥 ⊆ 𝑋) → ((mrCls‘𝐶)‘∪ 𝑥) = ∩ {𝑦 ∈ 𝐶 ∣ ∪ 𝑥 ⊆ 𝑦}) |
| 15 | 7, 14 | syldan 591 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ((mrCls‘𝐶)‘∪ 𝑥) = ∩ {𝑦 ∈ 𝐶 ∣ ∪ 𝑥 ⊆ 𝑦}) |
| 16 | 1, 11, 12, 13, 15 | ipolubdm 48928 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (𝑥 ∈ dom (lub‘𝐼) ↔ ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶)) |
| 17 | 10, 16 | mpbird 257 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ∈ dom (lub‘𝐼)) |
| 18 | ssv 3988 | . . . . . . . . 9 ⊢ 𝑦 ⊆ V | |
| 19 | int0 4943 | . . . . . . . . 9 ⊢ ∩ ∅ = V | |
| 20 | 18, 19 | sseqtrri 4013 | . . . . . . . 8 ⊢ 𝑦 ⊆ ∩ ∅ |
| 21 | simplr 768 | . . . . . . . . 9 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → 𝑥 = ∅) | |
| 22 | 21 | inteqd 4932 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → ∩ 𝑥 = ∩ ∅) |
| 23 | 20, 22 | sseqtrrid 4007 | . . . . . . 7 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → 𝑦 ⊆ ∩ 𝑥) |
| 24 | 23 | rabeqcda 3432 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = 𝐶) |
| 25 | 24 | unieqd 4901 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∪ 𝐶) |
| 26 | mreuni 17617 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) | |
| 27 | mre1cl 17611 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
| 28 | 26, 27 | eqeltrd 2835 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 ∈ 𝐶) |
| 29 | 28 | ad2antrr 726 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ 𝐶 ∈ 𝐶) |
| 30 | 25, 29 | eqeltrd 2835 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
| 31 | mreintcl 17612 | . . . . . . 7 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ 𝐶) | |
| 32 | unimax 4925 | . . . . . . 7 ⊢ (∩ 𝑥 ∈ 𝐶 → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∩ 𝑥) | |
| 33 | 31, 32 | syl 17 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∩ 𝑥) |
| 34 | 33, 31 | eqeltrd 2835 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
| 35 | 34 | 3expa 1118 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
| 36 | 30, 35 | pm2.61dane 3020 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
| 37 | eqidd 2737 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (glb‘𝐼) = (glb‘𝐼)) | |
| 38 | eqidd 2737 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥}) | |
| 39 | 1, 11, 12, 37, 38 | ipoglbdm 48931 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (𝑥 ∈ dom (glb‘𝐼) ↔ ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶)) |
| 40 | 36, 39 | mpbird 257 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ∈ dom (glb‘𝐼)) |
| 41 | 2, 3, 4, 6, 17, 40 | isclatd 48924 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {crab 3420 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4888 ∩ cint 4927 dom cdm 5659 ‘cfv 6536 Moorecmre 17599 mrClscmrc 17600 Posetcpo 18324 lubclub 18326 glbcglb 18327 CLatccla 18513 toInccipo 18542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-tset 17295 df-ple 17296 df-ocomp 17297 df-mre 17603 df-mrc 17604 df-proset 18311 df-poset 18330 df-lub 18361 df-glb 18362 df-clat 18514 df-ipo 18543 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |