Step | Hyp | Ref
| Expression |
1 | | mreclatGOOD.i |
. . 3
β’ πΌ = (toIncβπΆ) |
2 | 1 | ipobas 18496 |
. 2
β’ (πΆ β (Mooreβπ) β πΆ = (BaseβπΌ)) |
3 | | eqidd 2727 |
. 2
β’ (πΆ β (Mooreβπ) β (lubβπΌ) = (lubβπΌ)) |
4 | | eqidd 2727 |
. 2
β’ (πΆ β (Mooreβπ) β (glbβπΌ) = (glbβπΌ)) |
5 | 1 | ipopos 18501 |
. . 3
β’ πΌ β Poset |
6 | 5 | a1i 11 |
. 2
β’ (πΆ β (Mooreβπ) β πΌ β Poset) |
7 | | mreuniss 47803 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β βͺ π₯ β π) |
8 | | eqid 2726 |
. . . . 5
β’
(mrClsβπΆ) =
(mrClsβπΆ) |
9 | 8 | mrccl 17564 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ βͺ π₯
β π) β
((mrClsβπΆ)ββͺ π₯) β πΆ) |
10 | 7, 9 | syldan 590 |
. . 3
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β ((mrClsβπΆ)ββͺ π₯) β πΆ) |
11 | | simpl 482 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β πΆ β (Mooreβπ)) |
12 | | simpr 484 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β π₯ β πΆ) |
13 | | eqidd 2727 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β (lubβπΌ) = (lubβπΌ)) |
14 | 8 | mrcval 17563 |
. . . . 5
β’ ((πΆ β (Mooreβπ) β§ βͺ π₯
β π) β
((mrClsβπΆ)ββͺ π₯) = β©
{π¦ β πΆ β£ βͺ π₯ β π¦}) |
15 | 7, 14 | syldan 590 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β ((mrClsβπΆ)ββͺ π₯) = β©
{π¦ β πΆ β£ βͺ π₯ β π¦}) |
16 | 1, 11, 12, 13, 15 | ipolubdm 47883 |
. . 3
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β (π₯ β dom (lubβπΌ) β ((mrClsβπΆ)ββͺ π₯) β πΆ)) |
17 | 10, 16 | mpbird 257 |
. 2
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β π₯ β dom (lubβπΌ)) |
18 | | ssv 4001 |
. . . . . . . . 9
β’ π¦ β V |
19 | | int0 4959 |
. . . . . . . . 9
β’ β© β
= V |
20 | 18, 19 | sseqtrri 4014 |
. . . . . . . 8
β’ π¦ β β© β
|
21 | | simplr 766 |
. . . . . . . . 9
β’ ((((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ = β
) β§ π¦ β πΆ) β π₯ = β
) |
22 | 21 | inteqd 4948 |
. . . . . . . 8
β’ ((((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ = β
) β§ π¦ β πΆ) β β© π₯ = β©
β
) |
23 | 20, 22 | sseqtrrid 4030 |
. . . . . . 7
β’ ((((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ = β
) β§ π¦ β πΆ) β π¦ β β© π₯) |
24 | 23 | rabeqcda 3437 |
. . . . . 6
β’ (((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ = β
) β {π¦ β πΆ β£ π¦ β β© π₯} = πΆ) |
25 | 24 | unieqd 4915 |
. . . . 5
β’ (((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ = β
) β βͺ {π¦
β πΆ β£ π¦ β β© π₯} =
βͺ πΆ) |
26 | | mreuni 17553 |
. . . . . . 7
β’ (πΆ β (Mooreβπ) β βͺ πΆ =
π) |
27 | | mre1cl 17547 |
. . . . . . 7
β’ (πΆ β (Mooreβπ) β π β πΆ) |
28 | 26, 27 | eqeltrd 2827 |
. . . . . 6
β’ (πΆ β (Mooreβπ) β βͺ πΆ
β πΆ) |
29 | 28 | ad2antrr 723 |
. . . . 5
β’ (((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ = β
) β βͺ πΆ
β πΆ) |
30 | 25, 29 | eqeltrd 2827 |
. . . 4
β’ (((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ = β
) β βͺ {π¦
β πΆ β£ π¦ β β© π₯}
β πΆ) |
31 | | mreintcl 17548 |
. . . . . . 7
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ β§ π₯ β β
) β β© π₯
β πΆ) |
32 | | unimax 4941 |
. . . . . . 7
β’ (β© π₯
β πΆ β βͺ {π¦
β πΆ β£ π¦ β β© π₯} =
β© π₯) |
33 | 31, 32 | syl 17 |
. . . . . 6
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ β§ π₯ β β
) β βͺ {π¦
β πΆ β£ π¦ β β© π₯} =
β© π₯) |
34 | 33, 31 | eqeltrd 2827 |
. . . . 5
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ β§ π₯ β β
) β βͺ {π¦
β πΆ β£ π¦ β β© π₯}
β πΆ) |
35 | 34 | 3expa 1115 |
. . . 4
β’ (((πΆ β (Mooreβπ) β§ π₯ β πΆ) β§ π₯ β β
) β βͺ {π¦
β πΆ β£ π¦ β β© π₯}
β πΆ) |
36 | 30, 35 | pm2.61dane 3023 |
. . 3
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β βͺ {π¦ β πΆ β£ π¦ β β© π₯} β πΆ) |
37 | | eqidd 2727 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β (glbβπΌ) = (glbβπΌ)) |
38 | | eqidd 2727 |
. . . 4
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β βͺ {π¦ β πΆ β£ π¦ β β© π₯} = βͺ
{π¦ β πΆ β£ π¦ β β© π₯}) |
39 | 1, 11, 12, 37, 38 | ipoglbdm 47886 |
. . 3
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β (π₯ β dom (glbβπΌ) β βͺ {π¦ β πΆ β£ π¦ β β© π₯} β πΆ)) |
40 | 36, 39 | mpbird 257 |
. 2
β’ ((πΆ β (Mooreβπ) β§ π₯ β πΆ) β π₯ β dom (glbβπΌ)) |
41 | 2, 3, 4, 6, 17, 40 | isclatd 47879 |
1
β’ (πΆ β (Mooreβπ) β πΌ β CLat) |