Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mreclat | Structured version Visualization version GIF version |
Description: A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.) |
Ref | Expression |
---|---|
mreclatGOOD.i | ⊢ 𝐼 = (toInc‘𝐶) |
Ref | Expression |
---|---|
mreclat | ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreclatGOOD.i | . . 3 ⊢ 𝐼 = (toInc‘𝐶) | |
2 | 1 | ipobas 18249 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐶 = (Base‘𝐼)) |
3 | eqidd 2739 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → (lub‘𝐼) = (lub‘𝐼)) | |
4 | eqidd 2739 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → (glb‘𝐼) = (glb‘𝐼)) | |
5 | 1 | ipopos 18254 | . . 3 ⊢ 𝐼 ∈ Poset |
6 | 5 | a1i 11 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ Poset) |
7 | mreuniss 46193 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ 𝑥 ⊆ 𝑋) | |
8 | eqid 2738 | . . . . 5 ⊢ (mrCls‘𝐶) = (mrCls‘𝐶) | |
9 | 8 | mrccl 17320 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑥 ⊆ 𝑋) → ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶) |
10 | 7, 9 | syldan 591 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶) |
11 | simpl 483 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝐶 ∈ (Moore‘𝑋)) | |
12 | simpr 485 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ⊆ 𝐶) | |
13 | eqidd 2739 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (lub‘𝐼) = (lub‘𝐼)) | |
14 | 8 | mrcval 17319 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑥 ⊆ 𝑋) → ((mrCls‘𝐶)‘∪ 𝑥) = ∩ {𝑦 ∈ 𝐶 ∣ ∪ 𝑥 ⊆ 𝑦}) |
15 | 7, 14 | syldan 591 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ((mrCls‘𝐶)‘∪ 𝑥) = ∩ {𝑦 ∈ 𝐶 ∣ ∪ 𝑥 ⊆ 𝑦}) |
16 | 1, 11, 12, 13, 15 | ipolubdm 46273 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (𝑥 ∈ dom (lub‘𝐼) ↔ ((mrCls‘𝐶)‘∪ 𝑥) ∈ 𝐶)) |
17 | 10, 16 | mpbird 256 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ∈ dom (lub‘𝐼)) |
18 | ssv 3945 | . . . . . . . . 9 ⊢ 𝑦 ⊆ V | |
19 | int0 4893 | . . . . . . . . 9 ⊢ ∩ ∅ = V | |
20 | 18, 19 | sseqtrri 3958 | . . . . . . . 8 ⊢ 𝑦 ⊆ ∩ ∅ |
21 | simplr 766 | . . . . . . . . 9 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → 𝑥 = ∅) | |
22 | 21 | inteqd 4884 | . . . . . . . 8 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → ∩ 𝑥 = ∩ ∅) |
23 | 20, 22 | sseqtrrid 3974 | . . . . . . 7 ⊢ ((((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) ∧ 𝑦 ∈ 𝐶) → 𝑦 ⊆ ∩ 𝑥) |
24 | 23 | rabeqcda 3429 | . . . . . 6 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = 𝐶) |
25 | 24 | unieqd 4853 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∪ 𝐶) |
26 | mreuni 17309 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 = 𝑋) | |
27 | mre1cl 17303 | . . . . . . 7 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
28 | 26, 27 | eqeltrd 2839 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → ∪ 𝐶 ∈ 𝐶) |
29 | 28 | ad2antrr 723 | . . . . 5 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ 𝐶 ∈ 𝐶) |
30 | 25, 29 | eqeltrd 2839 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 = ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
31 | mreintcl 17304 | . . . . . . 7 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ 𝐶) | |
32 | unimax 4877 | . . . . . . 7 ⊢ (∩ 𝑥 ∈ 𝐶 → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∩ 𝑥) | |
33 | 31, 32 | syl 17 | . . . . . 6 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∩ 𝑥) |
34 | 33, 31 | eqeltrd 2839 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
35 | 34 | 3expa 1117 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) ∧ 𝑥 ≠ ∅) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
36 | 30, 35 | pm2.61dane 3032 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶) |
37 | eqidd 2739 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (glb‘𝐼) = (glb‘𝐼)) | |
38 | eqidd 2739 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} = ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥}) | |
39 | 1, 11, 12, 37, 38 | ipoglbdm 46276 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → (𝑥 ∈ dom (glb‘𝐼) ↔ ∪ {𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥} ∈ 𝐶)) |
40 | 36, 39 | mpbird 256 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ 𝐶) → 𝑥 ∈ dom (glb‘𝐼)) |
41 | 2, 3, 4, 6, 17, 40 | isclatd 46269 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {crab 3068 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 ∩ cint 4879 dom cdm 5589 ‘cfv 6433 Moorecmre 17291 mrClscmrc 17292 Posetcpo 18025 lubclub 18027 glbcglb 18028 CLatccla 18216 toInccipo 18245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-tset 16981 df-ple 16982 df-ocomp 16983 df-mre 17295 df-mrc 17296 df-proset 18013 df-poset 18031 df-lub 18064 df-glb 18065 df-clat 18217 df-ipo 18246 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |