MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lrold Structured version   Visualization version   GIF version

Theorem lrold 27950
Description: The union of the left and right options of a surreal make its old set. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
lrold (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday 𝐴))

Proof of Theorem lrold
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 leftval 27917 . . . . 5 ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴}
2 rightval 27918 . . . . 5 ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥}
31, 2uneq12i 4176 . . . 4 (( L ‘𝐴) ∪ ( R ‘𝐴)) = ({𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴} ∪ {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥})
4 unrab 4321 . . . 4 ({𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴} ∪ {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥}) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ (𝑥 <s 𝐴𝐴 <s 𝑥)}
53, 4eqtri 2763 . . 3 (( L ‘𝐴) ∪ ( R ‘𝐴)) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ (𝑥 <s 𝐴𝐴 <s 𝑥)}
6 oldirr 27943 . . . . . . . 8 ¬ 𝐴 ∈ ( O ‘( bday 𝐴))
7 eleq1 2827 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ ( O ‘( bday 𝐴)) ↔ 𝐴 ∈ ( O ‘( bday 𝐴))))
86, 7mtbiri 327 . . . . . . 7 (𝑥 = 𝐴 → ¬ 𝑥 ∈ ( O ‘( bday 𝐴)))
98necon2ai 2968 . . . . . 6 (𝑥 ∈ ( O ‘( bday 𝐴)) → 𝑥𝐴)
109adantl 481 . . . . 5 ((𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))) → 𝑥𝐴)
11 oldssno 27915 . . . . . . 7 ( O ‘( bday 𝐴)) ⊆ No
1211sseli 3991 . . . . . 6 (𝑥 ∈ ( O ‘( bday 𝐴)) → 𝑥 No )
13 slttrine 27811 . . . . . . 7 ((𝑥 No 𝐴 No ) → (𝑥𝐴 ↔ (𝑥 <s 𝐴𝐴 <s 𝑥)))
1413ancoms 458 . . . . . 6 ((𝐴 No 𝑥 No ) → (𝑥𝐴 ↔ (𝑥 <s 𝐴𝐴 <s 𝑥)))
1512, 14sylan2 593 . . . . 5 ((𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))) → (𝑥𝐴 ↔ (𝑥 <s 𝐴𝐴 <s 𝑥)))
1610, 15mpbid 232 . . . 4 ((𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))) → (𝑥 <s 𝐴𝐴 <s 𝑥))
1716rabeqcda 3445 . . 3 (𝐴 No → {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ (𝑥 <s 𝐴𝐴 <s 𝑥)} = ( O ‘( bday 𝐴)))
185, 17eqtrid 2787 . 2 (𝐴 No → (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday 𝐴)))
19 un0 4400 . . 3 (∅ ∪ ∅) = ∅
20 leftf 27919 . . . . . . 7 L : No ⟶𝒫 No
2120fdmi 6748 . . . . . 6 dom L = No
2221eleq2i 2831 . . . . 5 (𝐴 ∈ dom L ↔ 𝐴 No )
23 ndmfv 6942 . . . . 5 𝐴 ∈ dom L → ( L ‘𝐴) = ∅)
2422, 23sylnbir 331 . . . 4 𝐴 No → ( L ‘𝐴) = ∅)
25 rightf 27920 . . . . . . 7 R : No ⟶𝒫 No
2625fdmi 6748 . . . . . 6 dom R = No
2726eleq2i 2831 . . . . 5 (𝐴 ∈ dom R ↔ 𝐴 No )
28 ndmfv 6942 . . . . 5 𝐴 ∈ dom R → ( R ‘𝐴) = ∅)
2927, 28sylnbir 331 . . . 4 𝐴 No → ( R ‘𝐴) = ∅)
3024, 29uneq12d 4179 . . 3 𝐴 No → (( L ‘𝐴) ∪ ( R ‘𝐴)) = (∅ ∪ ∅))
31 bdaydm 27834 . . . . . . 7 dom bday = No
3231eleq2i 2831 . . . . . 6 (𝐴 ∈ dom bday 𝐴 No )
33 ndmfv 6942 . . . . . 6 𝐴 ∈ dom bday → ( bday 𝐴) = ∅)
3432, 33sylnbir 331 . . . . 5 𝐴 No → ( bday 𝐴) = ∅)
3534fveq2d 6911 . . . 4 𝐴 No → ( O ‘( bday 𝐴)) = ( O ‘∅))
36 old0 27913 . . . 4 ( O ‘∅) = ∅
3735, 36eqtrdi 2791 . . 3 𝐴 No → ( O ‘( bday 𝐴)) = ∅)
3819, 30, 373eqtr4a 2801 . 2 𝐴 No → (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday 𝐴)))
3918, 38pm2.61i 182 1 (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  {crab 3433  cun 3961  c0 4339  𝒫 cpw 4605   class class class wbr 5148  dom cdm 5689  cfv 6563   No csur 27699   <s cslt 27700   bday cbday 27701   O cold 27897   L cleft 27899   R cright 27900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704  df-sslt 27841  df-scut 27843  df-made 27901  df-old 27902  df-left 27904  df-right 27905
This theorem is referenced by:  lruneq  27959  lrrecval2  27988  addsbdaylem  28064  negsbdaylem  28103  sltonold  28298
  Copyright terms: Public domain W3C validator