MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lrold Structured version   Visualization version   GIF version

Theorem lrold 27371
Description: The union of the left and right options of a surreal make its old set. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
lrold (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday 𝐴))

Proof of Theorem lrold
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 leftval 27338 . . . . 5 ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴}
2 rightval 27339 . . . . 5 ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥}
31, 2uneq12i 4160 . . . 4 (( L ‘𝐴) ∪ ( R ‘𝐴)) = ({𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴} ∪ {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥})
4 unrab 4304 . . . 4 ({𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝑥 <s 𝐴} ∪ {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥}) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ (𝑥 <s 𝐴𝐴 <s 𝑥)}
53, 4eqtri 2761 . . 3 (( L ‘𝐴) ∪ ( R ‘𝐴)) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ (𝑥 <s 𝐴𝐴 <s 𝑥)}
6 oldirr 27364 . . . . . . . 8 ¬ 𝐴 ∈ ( O ‘( bday 𝐴))
7 eleq1 2822 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ ( O ‘( bday 𝐴)) ↔ 𝐴 ∈ ( O ‘( bday 𝐴))))
86, 7mtbiri 327 . . . . . . 7 (𝑥 = 𝐴 → ¬ 𝑥 ∈ ( O ‘( bday 𝐴)))
98necon2ai 2971 . . . . . 6 (𝑥 ∈ ( O ‘( bday 𝐴)) → 𝑥𝐴)
109adantl 483 . . . . 5 ((𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))) → 𝑥𝐴)
11 oldssno 27336 . . . . . . 7 ( O ‘( bday 𝐴)) ⊆ No
1211sseli 3977 . . . . . 6 (𝑥 ∈ ( O ‘( bday 𝐴)) → 𝑥 No )
13 slttrine 27234 . . . . . . 7 ((𝑥 No 𝐴 No ) → (𝑥𝐴 ↔ (𝑥 <s 𝐴𝐴 <s 𝑥)))
1413ancoms 460 . . . . . 6 ((𝐴 No 𝑥 No ) → (𝑥𝐴 ↔ (𝑥 <s 𝐴𝐴 <s 𝑥)))
1512, 14sylan2 594 . . . . 5 ((𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))) → (𝑥𝐴 ↔ (𝑥 <s 𝐴𝐴 <s 𝑥)))
1610, 15mpbid 231 . . . 4 ((𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))) → (𝑥 <s 𝐴𝐴 <s 𝑥))
1716rabeqcda 3444 . . 3 (𝐴 No → {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ (𝑥 <s 𝐴𝐴 <s 𝑥)} = ( O ‘( bday 𝐴)))
185, 17eqtrid 2785 . 2 (𝐴 No → (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday 𝐴)))
19 un0 4389 . . 3 (∅ ∪ ∅) = ∅
20 leftf 27340 . . . . . . 7 L : No ⟶𝒫 No
2120fdmi 6726 . . . . . 6 dom L = No
2221eleq2i 2826 . . . . 5 (𝐴 ∈ dom L ↔ 𝐴 No )
23 ndmfv 6923 . . . . 5 𝐴 ∈ dom L → ( L ‘𝐴) = ∅)
2422, 23sylnbir 331 . . . 4 𝐴 No → ( L ‘𝐴) = ∅)
25 rightf 27341 . . . . . . 7 R : No ⟶𝒫 No
2625fdmi 6726 . . . . . 6 dom R = No
2726eleq2i 2826 . . . . 5 (𝐴 ∈ dom R ↔ 𝐴 No )
28 ndmfv 6923 . . . . 5 𝐴 ∈ dom R → ( R ‘𝐴) = ∅)
2927, 28sylnbir 331 . . . 4 𝐴 No → ( R ‘𝐴) = ∅)
3024, 29uneq12d 4163 . . 3 𝐴 No → (( L ‘𝐴) ∪ ( R ‘𝐴)) = (∅ ∪ ∅))
31 bdaydm 27256 . . . . . . 7 dom bday = No
3231eleq2i 2826 . . . . . 6 (𝐴 ∈ dom bday 𝐴 No )
33 ndmfv 6923 . . . . . 6 𝐴 ∈ dom bday → ( bday 𝐴) = ∅)
3432, 33sylnbir 331 . . . . 5 𝐴 No → ( bday 𝐴) = ∅)
3534fveq2d 6892 . . . 4 𝐴 No → ( O ‘( bday 𝐴)) = ( O ‘∅))
36 old0 27334 . . . 4 ( O ‘∅) = ∅
3735, 36eqtrdi 2789 . . 3 𝐴 No → ( O ‘( bday 𝐴)) = ∅)
3819, 30, 373eqtr4a 2799 . 2 𝐴 No → (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday 𝐴)))
3918, 38pm2.61i 182 1 (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941  {crab 3433  cun 3945  c0 4321  𝒫 cpw 4601   class class class wbr 5147  dom cdm 5675  cfv 6540   No csur 27123   <s cslt 27124   bday cbday 27125   O cold 27318   L cleft 27320   R cright 27321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-1o 8461  df-2o 8462  df-no 27126  df-slt 27127  df-bday 27128  df-sslt 27263  df-scut 27265  df-made 27322  df-old 27323  df-left 27325  df-right 27326
This theorem is referenced by:  lruneq  27380  lrrecval2  27404  negsbdaylem  27510
  Copyright terms: Public domain W3C validator