Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjcrv0 Structured version   Visualization version   GIF version

Theorem prjcrv0 42648
Description: The "curve" (zero set) corresponding to the zero polynomial contains all coordinates. (Contributed by SN, 23-Nov-2024.)
Hypotheses
Ref Expression
prjcrv0.y 𝑌 = ((0...𝑁) mPoly 𝐾)
prjcrv0.0 0 = (0g𝑌)
prjcrv0.p 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
prjcrv0.n (𝜑𝑁 ∈ ℕ0)
prjcrv0.k (𝜑𝐾 ∈ Field)
Assertion
Ref Expression
prjcrv0 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃)

Proof of Theorem prjcrv0
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 ((0...𝑁) mHomP 𝐾) = ((0...𝑁) mHomP 𝐾)
2 eqid 2736 . . 3 ((0...𝑁) eval 𝐾) = ((0...𝑁) eval 𝐾)
3 prjcrv0.p . . 3 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
4 eqid 2736 . . 3 (0g𝐾) = (0g𝐾)
5 prjcrv0.n . . 3 (𝜑𝑁 ∈ ℕ0)
6 prjcrv0.k . . 3 (𝜑𝐾 ∈ Field)
7 fvssunirn 6938 . . . 4 (((0...𝑁) mHomP 𝐾)‘𝑁) ⊆ ran ((0...𝑁) mHomP 𝐾)
8 prjcrv0.y . . . . . 6 𝑌 = ((0...𝑁) mPoly 𝐾)
9 eqid 2736 . . . . . 6 { ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin}
10 prjcrv0.0 . . . . . 6 0 = (0g𝑌)
11 ovexd 7467 . . . . . 6 (𝜑 → (0...𝑁) ∈ V)
126fldcrngd 20743 . . . . . . 7 (𝜑𝐾 ∈ CRing)
1312crnggrpd 20245 . . . . . 6 (𝜑𝐾 ∈ Grp)
148, 9, 4, 10, 11, 13mpl0 22027 . . . . 5 (𝜑0 = ({ ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} × {(0g𝐾)}))
151, 4, 9, 11, 13, 5mhp0cl 22151 . . . . 5 (𝜑 → ({ ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} × {(0g𝐾)}) ∈ (((0...𝑁) mHomP 𝐾)‘𝑁))
1614, 15eqeltrd 2840 . . . 4 (𝜑0 ∈ (((0...𝑁) mHomP 𝐾)‘𝑁))
177, 16sselid 3980 . . 3 (𝜑0 ran ((0...𝑁) mHomP 𝐾))
181, 2, 3, 4, 5, 6, 17prjcrvval 42647 . 2 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = {𝑝𝑃 ∣ ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g𝐾)}})
19 eqid 2736 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
20 ovexd 7467 . . . . . 6 ((𝜑𝑝𝑃) → (0...𝑁) ∈ V)
2112adantr 480 . . . . . 6 ((𝜑𝑝𝑃) → 𝐾 ∈ CRing)
222, 19, 8, 4, 10, 20, 21evl0 42572 . . . . 5 ((𝜑𝑝𝑃) → (((0...𝑁) eval 𝐾)‘ 0 ) = (((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}))
2322imaeq1d 6076 . . . 4 ((𝜑𝑝𝑃) → ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}) “ 𝑝))
24 eqid 2736 . . . . . . . . . . 11 (𝐾 freeLMod (0...𝑁)) = (𝐾 freeLMod (0...𝑁))
25 eqid 2736 . . . . . . . . . . 11 ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) = ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})
266flddrngd 20742 . . . . . . . . . . 11 (𝜑𝐾 ∈ DivRing)
273, 24, 25, 5, 26prjspnssbas 42636 . . . . . . . . . 10 (𝜑𝑃 ⊆ 𝒫 ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}))
28 eqid 2736 . . . . . . . . . . . . . . 15 {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} = {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)}
2924, 19, 4, 28frlmbas 21776 . . . . . . . . . . . . . 14 ((𝐾 ∈ Field ∧ (0...𝑁) ∈ V) → {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} = (Base‘(𝐾 freeLMod (0...𝑁))))
306, 11, 29syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} = (Base‘(𝐾 freeLMod (0...𝑁))))
31 ssrab2 4079 . . . . . . . . . . . . 13 {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} ⊆ ((Base‘𝐾) ↑m (0...𝑁))
3230, 31eqsstrrdi 4028 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝐾 freeLMod (0...𝑁))) ⊆ ((Base‘𝐾) ↑m (0...𝑁)))
3332ssdifssd 4146 . . . . . . . . . . 11 (𝜑 → ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ⊆ ((Base‘𝐾) ↑m (0...𝑁)))
3433sspwd 4612 . . . . . . . . . 10 (𝜑 → 𝒫 ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ⊆ 𝒫 ((Base‘𝐾) ↑m (0...𝑁)))
3527, 34sstrd 3993 . . . . . . . . 9 (𝜑𝑃 ⊆ 𝒫 ((Base‘𝐾) ↑m (0...𝑁)))
3635sselda 3982 . . . . . . . 8 ((𝜑𝑝𝑃) → 𝑝 ∈ 𝒫 ((Base‘𝐾) ↑m (0...𝑁)))
3736elpwid 4608 . . . . . . 7 ((𝜑𝑝𝑃) → 𝑝 ⊆ ((Base‘𝐾) ↑m (0...𝑁)))
38 sseqin2 4222 . . . . . . 7 (𝑝 ⊆ ((Base‘𝐾) ↑m (0...𝑁)) ↔ (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) = 𝑝)
3937, 38sylib 218 . . . . . 6 ((𝜑𝑝𝑃) → (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) = 𝑝)
405adantr 480 . . . . . . 7 ((𝜑𝑝𝑃) → 𝑁 ∈ ℕ0)
4126adantr 480 . . . . . . 7 ((𝜑𝑝𝑃) → 𝐾 ∈ DivRing)
42 simpr 484 . . . . . . 7 ((𝜑𝑝𝑃) → 𝑝𝑃)
433, 24, 25, 40, 41, 42prjspnn0 42637 . . . . . 6 ((𝜑𝑝𝑃) → 𝑝 ≠ ∅)
4439, 43eqnetrd 3007 . . . . 5 ((𝜑𝑝𝑃) → (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅)
45 xpima2 6203 . . . . 5 ((((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅ → ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}) “ 𝑝) = {(0g𝐾)})
4644, 45syl 17 . . . 4 ((𝜑𝑝𝑃) → ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}) “ 𝑝) = {(0g𝐾)})
4723, 46eqtrd 2776 . . 3 ((𝜑𝑝𝑃) → ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g𝐾)})
4847rabeqcda 3447 . 2 (𝜑 → {𝑝𝑃 ∣ ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g𝐾)}} = 𝑃)
4918, 48eqtrd 2776 1 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  {crab 3435  Vcvv 3479  cdif 3947  cin 3949  wss 3950  c0 4332  𝒫 cpw 4599  {csn 4625   cuni 4906   class class class wbr 5142   × cxp 5682  ccnv 5683  ran crn 5685  cima 5687  cfv 6560  (class class class)co 7432  m cmap 8867  Fincfn 8986   finSupp cfsupp 9402  0cc0 11156  cn 12267  0cn0 12528  ...cfz 13548  Basecbs 17248  0gc0g 17485  CRingccrg 20232  DivRingcdr 20730  Fieldcfield 20731   freeLMod cfrlm 21767   mPoly cmpl 21927   eval cevl 22098   mHomP cmhp 22134  ℙ𝕣𝕠𝕛ncprjspn 42629  ℙ𝕣𝕠𝕛Crvcprjcrv 42644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-srg 20185  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-drng 20732  df-field 20733  df-lmod 20861  df-lss 20931  df-lsp 20971  df-lvec 21103  df-sra 21173  df-rgmod 21174  df-dsmm 21753  df-frlm 21768  df-assa 21874  df-asp 21875  df-ascl 21876  df-psr 21930  df-mvr 21931  df-mpl 21932  df-evls 22099  df-evl 22100  df-mhp 22141  df-prjsp 42617  df-prjspn 42630  df-prjcrv 42645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator