Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjcrv0 | Structured version Visualization version GIF version |
Description: The "curve" (zero set) corresponding to the zero polynomial contains all coordinates. (Contributed by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
prjcrv0.y | ⊢ 𝑌 = ((0...𝑁) mPoly 𝐾) |
prjcrv0.0 | ⊢ 0 = (0g‘𝑌) |
prjcrv0.p | ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) |
prjcrv0.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
prjcrv0.k | ⊢ (𝜑 → 𝐾 ∈ Field) |
Ref | Expression |
---|---|
prjcrv0 | ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ ((0...𝑁) mHomP 𝐾) = ((0...𝑁) mHomP 𝐾) | |
2 | eqid 2736 | . . 3 ⊢ ((0...𝑁) eval 𝐾) = ((0...𝑁) eval 𝐾) | |
3 | prjcrv0.p | . . 3 ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) | |
4 | eqid 2736 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
5 | prjcrv0.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
6 | prjcrv0.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Field) | |
7 | fvssunirn 6859 | . . . 4 ⊢ (((0...𝑁) mHomP 𝐾)‘𝑁) ⊆ ∪ ran ((0...𝑁) mHomP 𝐾) | |
8 | prjcrv0.y | . . . . . 6 ⊢ 𝑌 = ((0...𝑁) mPoly 𝐾) | |
9 | eqid 2736 | . . . . . 6 ⊢ {ℎ ∈ (ℕ0 ↑m (0...𝑁)) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m (0...𝑁)) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
10 | prjcrv0.0 | . . . . . 6 ⊢ 0 = (0g‘𝑌) | |
11 | ovexd 7373 | . . . . . 6 ⊢ (𝜑 → (0...𝑁) ∈ V) | |
12 | 6 | fldcrngd 20106 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ CRing) |
13 | 12 | crnggrpd 19893 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ Grp) |
14 | 8, 9, 4, 10, 11, 13 | mpl0 21319 | . . . . 5 ⊢ (𝜑 → 0 = ({ℎ ∈ (ℕ0 ↑m (0...𝑁)) ∣ (◡ℎ “ ℕ) ∈ Fin} × {(0g‘𝐾)})) |
15 | 1, 4, 9, 11, 13, 5 | mhp0cl 21443 | . . . . 5 ⊢ (𝜑 → ({ℎ ∈ (ℕ0 ↑m (0...𝑁)) ∣ (◡ℎ “ ℕ) ∈ Fin} × {(0g‘𝐾)}) ∈ (((0...𝑁) mHomP 𝐾)‘𝑁)) |
16 | 14, 15 | eqeltrd 2837 | . . . 4 ⊢ (𝜑 → 0 ∈ (((0...𝑁) mHomP 𝐾)‘𝑁)) |
17 | 7, 16 | sselid 3930 | . . 3 ⊢ (𝜑 → 0 ∈ ∪ ran ((0...𝑁) mHomP 𝐾)) |
18 | 1, 2, 3, 4, 5, 6, 17 | prjcrvval 40782 | . 2 ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = {𝑝 ∈ 𝑃 ∣ ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g‘𝐾)}}) |
19 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
20 | ovexd 7373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (0...𝑁) ∈ V) | |
21 | 12 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝐾 ∈ CRing) |
22 | 2, 19, 8, 4, 10, 20, 21 | evl0 40582 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (((0...𝑁) eval 𝐾)‘ 0 ) = (((Base‘𝐾) ↑m (0...𝑁)) × {(0g‘𝐾)})) |
23 | 22 | imaeq1d 5999 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g‘𝐾)}) “ 𝑝)) |
24 | eqid 2736 | . . . . . . . . . . 11 ⊢ (𝐾 freeLMod (0...𝑁)) = (𝐾 freeLMod (0...𝑁)) | |
25 | eqid 2736 | . . . . . . . . . . 11 ⊢ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) = ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) | |
26 | 6 | flddrngd 40566 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 ∈ DivRing) |
27 | 3, 24, 25, 5, 26 | prjspnssbas 40771 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ⊆ 𝒫 ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) |
28 | eqid 2736 | . . . . . . . . . . . . . . 15 ⊢ {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} = {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} | |
29 | 24, 19, 4, 28 | frlmbas 21069 | . . . . . . . . . . . . . 14 ⊢ ((𝐾 ∈ Field ∧ (0...𝑁) ∈ V) → {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} = (Base‘(𝐾 freeLMod (0...𝑁)))) |
30 | 6, 11, 29 | syl2anc 584 | . . . . . . . . . . . . 13 ⊢ (𝜑 → {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} = (Base‘(𝐾 freeLMod (0...𝑁)))) |
31 | ssrab2 4025 | . . . . . . . . . . . . 13 ⊢ {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} ⊆ ((Base‘𝐾) ↑m (0...𝑁)) | |
32 | 30, 31 | eqsstrrdi 3987 | . . . . . . . . . . . 12 ⊢ (𝜑 → (Base‘(𝐾 freeLMod (0...𝑁))) ⊆ ((Base‘𝐾) ↑m (0...𝑁))) |
33 | 32 | ssdifssd 4090 | . . . . . . . . . . 11 ⊢ (𝜑 → ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ⊆ ((Base‘𝐾) ↑m (0...𝑁))) |
34 | 33 | sspwd 4561 | . . . . . . . . . 10 ⊢ (𝜑 → 𝒫 ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ⊆ 𝒫 ((Base‘𝐾) ↑m (0...𝑁))) |
35 | 27, 34 | sstrd 3942 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ⊆ 𝒫 ((Base‘𝐾) ↑m (0...𝑁))) |
36 | 35 | sselda 3932 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ 𝒫 ((Base‘𝐾) ↑m (0...𝑁))) |
37 | 36 | elpwid 4557 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑝 ⊆ ((Base‘𝐾) ↑m (0...𝑁))) |
38 | sseqin2 4163 | . . . . . . 7 ⊢ (𝑝 ⊆ ((Base‘𝐾) ↑m (0...𝑁)) ↔ (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) = 𝑝) | |
39 | 37, 38 | sylib 217 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) = 𝑝) |
40 | 5 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑁 ∈ ℕ0) |
41 | 26 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝐾 ∈ DivRing) |
42 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ 𝑃) | |
43 | 3, 24, 25, 40, 41, 42 | prjspnn0 40772 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑝 ≠ ∅) |
44 | 39, 43 | eqnetrd 3008 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅) |
45 | xpima2 6123 | . . . . 5 ⊢ ((((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅ → ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g‘𝐾)}) “ 𝑝) = {(0g‘𝐾)}) | |
46 | 44, 45 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g‘𝐾)}) “ 𝑝) = {(0g‘𝐾)}) |
47 | 23, 46 | eqtrd 2776 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g‘𝐾)}) |
48 | 47 | rabeqcda 3414 | . 2 ⊢ (𝜑 → {𝑝 ∈ 𝑃 ∣ ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g‘𝐾)}} = 𝑃) |
49 | 18, 48 | eqtrd 2776 | 1 ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 {crab 3403 Vcvv 3441 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 ∅c0 4270 𝒫 cpw 4548 {csn 4574 ∪ cuni 4853 class class class wbr 5093 × cxp 5619 ◡ccnv 5620 ran crn 5622 “ cima 5624 ‘cfv 6480 (class class class)co 7338 ↑m cmap 8687 Fincfn 8805 finSupp cfsupp 9227 0cc0 10973 ℕcn 12075 ℕ0cn0 12335 ...cfz 13341 Basecbs 17010 0gc0g 17248 CRingccrg 19880 DivRingcdr 20094 Fieldcfield 20095 freeLMod cfrlm 21060 mPoly cmpl 21216 eval cevl 21388 mHomP cmhp 21426 ℙ𝕣𝕠𝕛ncprjspn 40764 ℙ𝕣𝕠𝕛Crvcprjcrv 40779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-of 7596 df-ofr 7597 df-om 7782 df-1st 7900 df-2nd 7901 df-supp 8049 df-tpos 8113 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-ec 8572 df-qs 8576 df-map 8689 df-pm 8690 df-ixp 8758 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-fsupp 9228 df-sup 9300 df-oi 9368 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-z 12422 df-dec 12540 df-uz 12685 df-fz 13342 df-fzo 13485 df-seq 13824 df-hash 14147 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-hom 17084 df-cco 17085 df-0g 17250 df-gsum 17251 df-prds 17256 df-pws 17258 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-mhm 18528 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-mulg 18798 df-subg 18849 df-ghm 18929 df-cntz 19020 df-cmn 19484 df-abl 19485 df-mgp 19817 df-ur 19834 df-srg 19838 df-ring 19881 df-cring 19882 df-oppr 19958 df-dvdsr 19979 df-unit 19980 df-invr 20010 df-rnghom 20055 df-drng 20096 df-field 20097 df-subrg 20128 df-lmod 20232 df-lss 20301 df-lsp 20341 df-lvec 20472 df-sra 20541 df-rgmod 20542 df-dsmm 21046 df-frlm 21061 df-assa 21167 df-asp 21168 df-ascl 21169 df-psr 21219 df-mvr 21220 df-mpl 21221 df-evls 21389 df-evl 21390 df-mhp 21430 df-prjsp 40752 df-prjspn 40765 df-prjcrv 40780 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |