Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjcrv0 Structured version   Visualization version   GIF version

Theorem prjcrv0 40459
Description: The "curve" (zero set) corresponding to the zero polynomial contains all coordinates. (Contributed by SN, 23-Nov-2024.)
Hypotheses
Ref Expression
prjcrv0.y 𝑌 = ((0...𝑁) mPoly 𝐾)
prjcrv0.0 0 = (0g𝑌)
prjcrv0.p 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
prjcrv0.n (𝜑𝑁 ∈ ℕ0)
prjcrv0.k (𝜑𝐾 ∈ Field)
Assertion
Ref Expression
prjcrv0 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃)

Proof of Theorem prjcrv0
Dummy variables 𝑎 𝑘 𝑝 𝑓 𝑛 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 ((0...𝑁) mHomP 𝐾) = ((0...𝑁) mHomP 𝐾)
2 eqid 2740 . . 3 ((0...𝑁) eval 𝐾) = ((0...𝑁) eval 𝐾)
3 prjcrv0.p . . 3 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
4 eqid 2740 . . 3 (0g𝐾) = (0g𝐾)
5 prjcrv0.n . . 3 (𝜑𝑁 ∈ ℕ0)
6 prjcrv0.k . . 3 (𝜑𝐾 ∈ Field)
7 funmpt 6469 . . . . 5 Fun (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘𝑌) ∣ (𝑓 supp (0g𝐾)) ⊆ {𝑔 ∈ { ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})
8 prjcrv0.y . . . . . . 7 𝑌 = ((0...𝑁) mPoly 𝐾)
9 eqid 2740 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
10 eqid 2740 . . . . . . 7 { ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin}
11 ovexd 7304 . . . . . . 7 (𝜑 → (0...𝑁) ∈ V)
121, 8, 9, 4, 10, 11, 6mhpfval 21319 . . . . . 6 (𝜑 → ((0...𝑁) mHomP 𝐾) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘𝑌) ∣ (𝑓 supp (0g𝐾)) ⊆ {𝑔 ∈ { ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
1312funeqd 6453 . . . . 5 (𝜑 → (Fun ((0...𝑁) mHomP 𝐾) ↔ Fun (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘𝑌) ∣ (𝑓 supp (0g𝐾)) ⊆ {𝑔 ∈ { ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})))
147, 13mpbiri 257 . . . 4 (𝜑 → Fun ((0...𝑁) mHomP 𝐾))
15 prjcrv0.0 . . . . . 6 0 = (0g𝑌)
166fldcrngd 40244 . . . . . . 7 (𝜑𝐾 ∈ CRing)
1716crnggrpd 19787 . . . . . 6 (𝜑𝐾 ∈ Grp)
188, 10, 4, 15, 11, 17mpl0 21202 . . . . 5 (𝜑0 = ({ ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} × {(0g𝐾)}))
19 0nn0 12240 . . . . . . 7 0 ∈ ℕ0
2019a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
211, 4, 10, 11, 17, 20mhp0cl 21326 . . . . 5 (𝜑 → ({ ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} × {(0g𝐾)}) ∈ (((0...𝑁) mHomP 𝐾)‘0))
2218, 21eqeltrd 2841 . . . 4 (𝜑0 ∈ (((0...𝑁) mHomP 𝐾)‘0))
23 elunirn2 7121 . . . 4 ((Fun ((0...𝑁) mHomP 𝐾) ∧ 0 ∈ (((0...𝑁) mHomP 𝐾)‘0)) → 0 ran ((0...𝑁) mHomP 𝐾))
2414, 22, 23syl2anc 584 . . 3 (𝜑0 ran ((0...𝑁) mHomP 𝐾))
251, 2, 3, 4, 5, 6, 24prjcrvval 40458 . 2 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = {𝑝𝑃 ∣ ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g𝐾)}})
26 eqid 2740 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
27 ovexd 7304 . . . . . 6 ((𝜑𝑝𝑃) → (0...𝑁) ∈ V)
2816adantr 481 . . . . . 6 ((𝜑𝑝𝑃) → 𝐾 ∈ CRing)
292, 26, 8, 4, 15, 27, 28evl0 40260 . . . . 5 ((𝜑𝑝𝑃) → (((0...𝑁) eval 𝐾)‘ 0 ) = (((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}))
3029imaeq1d 5966 . . . 4 ((𝜑𝑝𝑃) → ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}) “ 𝑝))
313eleq2i 2832 . . . . . . . . . 10 (𝑝𝑃𝑝 ∈ (𝑁ℙ𝕣𝕠𝕛n𝐾))
3231biimpi 215 . . . . . . . . 9 (𝑝𝑃𝑝 ∈ (𝑁ℙ𝕣𝕠𝕛n𝐾))
3332adantl 482 . . . . . . . 8 ((𝜑𝑝𝑃) → 𝑝 ∈ (𝑁ℙ𝕣𝕠𝕛n𝐾))
345adantr 481 . . . . . . . . . 10 ((𝜑𝑝𝑃) → 𝑁 ∈ ℕ0)
35 isfld 19990 . . . . . . . . . . . . 13 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
3635simplbi 498 . . . . . . . . . . . 12 (𝐾 ∈ Field → 𝐾 ∈ DivRing)
376, 36syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ DivRing)
3837adantr 481 . . . . . . . . . 10 ((𝜑𝑝𝑃) → 𝐾 ∈ DivRing)
39 prjspnval 40444 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))))
4034, 38, 39syl2anc 584 . . . . . . . . 9 ((𝜑𝑝𝑃) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))))
41 eqid 2740 . . . . . . . . . . . . 13 (𝐾 freeLMod (0...𝑁)) = (𝐾 freeLMod (0...𝑁))
4241frlmlvec 20958 . . . . . . . . . . . 12 ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → (𝐾 freeLMod (0...𝑁)) ∈ LVec)
4337, 11, 42syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐾 freeLMod (0...𝑁)) ∈ LVec)
4443adantr 481 . . . . . . . . . 10 ((𝜑𝑝𝑃) → (𝐾 freeLMod (0...𝑁)) ∈ LVec)
45 eqid 2740 . . . . . . . . . . 11 (0g‘(𝐾 freeLMod (0...𝑁))) = (0g‘(𝐾 freeLMod (0...𝑁)))
46 eqid 2740 . . . . . . . . . . 11 ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) = ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})
47 eqid 2740 . . . . . . . . . . 11 (LSpan‘(𝐾 freeLMod (0...𝑁))) = (LSpan‘(𝐾 freeLMod (0...𝑁)))
4845, 46, 47prjspval2 40441 . . . . . . . . . 10 ((𝐾 freeLMod (0...𝑁)) ∈ LVec → (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) = 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})
4944, 48syl 17 . . . . . . . . 9 ((𝜑𝑝𝑃) → (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) = 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})
5040, 49eqtrd 2780 . . . . . . . 8 ((𝜑𝑝𝑃) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})
5133, 50eleqtrd 2843 . . . . . . 7 ((𝜑𝑝𝑃) → 𝑝 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})
52 eliun 4934 . . . . . . 7 (𝑝 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})} ↔ ∃𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})
5351, 52sylib 217 . . . . . 6 ((𝜑𝑝𝑃) → ∃𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})
54 eqid 2740 . . . . . . . . . . . . 13 {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} = {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)}
5541, 26, 4, 54frlmbas 20952 . . . . . . . . . . . 12 ((𝐾 ∈ Field ∧ (0...𝑁) ∈ V) → {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} = (Base‘(𝐾 freeLMod (0...𝑁))))
566, 11, 55syl2anc 584 . . . . . . . . . . 11 (𝜑 → {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} = (Base‘(𝐾 freeLMod (0...𝑁))))
57 ssrab2 4018 . . . . . . . . . . 11 {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} ⊆ ((Base‘𝐾) ↑m (0...𝑁))
5856, 57eqsstrrdi 3981 . . . . . . . . . 10 (𝜑 → (Base‘(𝐾 freeLMod (0...𝑁))) ⊆ ((Base‘𝐾) ↑m (0...𝑁)))
5958ad2antrr 723 . . . . . . . . 9 (((𝜑𝑝𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → (Base‘(𝐾 freeLMod (0...𝑁))) ⊆ ((Base‘𝐾) ↑m (0...𝑁)))
60 eldifi 4066 . . . . . . . . . . 11 (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) → 𝑎 ∈ (Base‘(𝐾 freeLMod (0...𝑁))))
6160adantl 482 . . . . . . . . . 10 (((𝜑𝑝𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → 𝑎 ∈ (Base‘(𝐾 freeLMod (0...𝑁))))
6261adantrr 714 . . . . . . . . 9 (((𝜑𝑝𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → 𝑎 ∈ (Base‘(𝐾 freeLMod (0...𝑁))))
6359, 62sseldd 3927 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → 𝑎 ∈ ((Base‘𝐾) ↑m (0...𝑁)))
64 velsn 4583 . . . . . . . . . 10 (𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})} ↔ 𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}))
6564anbi2i 623 . . . . . . . . 9 ((𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})}) ↔ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})))
6643lveclmodd 40247 . . . . . . . . . . . . . 14 (𝜑 → (𝐾 freeLMod (0...𝑁)) ∈ LMod)
6766ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑝𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → (𝐾 freeLMod (0...𝑁)) ∈ LMod)
68 eqid 2740 . . . . . . . . . . . . . 14 (Base‘(𝐾 freeLMod (0...𝑁))) = (Base‘(𝐾 freeLMod (0...𝑁)))
6968, 47lspsnid 20245 . . . . . . . . . . . . 13 (((𝐾 freeLMod (0...𝑁)) ∈ LMod ∧ 𝑎 ∈ (Base‘(𝐾 freeLMod (0...𝑁)))) → 𝑎 ∈ ((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}))
7067, 61, 69syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑝𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → 𝑎 ∈ ((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}))
71 eldifn 4067 . . . . . . . . . . . . 13 (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) → ¬ 𝑎 ∈ {(0g‘(𝐾 freeLMod (0...𝑁)))})
7271adantl 482 . . . . . . . . . . . 12 (((𝜑𝑝𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → ¬ 𝑎 ∈ {(0g‘(𝐾 freeLMod (0...𝑁)))})
7370, 72eldifd 3903 . . . . . . . . . . 11 (((𝜑𝑝𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → 𝑎 ∈ (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}))
74 eleq2 2829 . . . . . . . . . . 11 (𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) → (𝑎𝑝𝑎 ∈ (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})))
7573, 74syl5ibrcom 246 . . . . . . . . . 10 (((𝜑𝑝𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → (𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) → 𝑎𝑝))
7675impr 455 . . . . . . . . 9 (((𝜑𝑝𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}))) → 𝑎𝑝)
7765, 76sylan2b 594 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → 𝑎𝑝)
7863, 77elind 4133 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → 𝑎 ∈ (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝))
7978ne0d 4275 . . . . . 6 (((𝜑𝑝𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅)
8053, 79rexlimddv 3222 . . . . 5 ((𝜑𝑝𝑃) → (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅)
81 xpima2 6085 . . . . 5 ((((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅ → ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}) “ 𝑝) = {(0g𝐾)})
8280, 81syl 17 . . . 4 ((𝜑𝑝𝑃) → ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}) “ 𝑝) = {(0g𝐾)})
8330, 82eqtrd 2780 . . 3 ((𝜑𝑝𝑃) → ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g𝐾)})
8483rabeqcda 3428 . 2 (𝜑 → {𝑝𝑃 ∣ ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g𝐾)}} = 𝑃)
8525, 84eqtrd 2780 1 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1542  wcel 2110  wne 2945  wrex 3067  {crab 3070  Vcvv 3431  cdif 3889  cin 3891  wss 3892  c0 4262  {csn 4567   cuni 4845   ciun 4930   class class class wbr 5079  cmpt 5162   × cxp 5587  ccnv 5588  ran crn 5590  cima 5592  Fun wfun 6425  cfv 6431  (class class class)co 7269   supp csupp 7962  m cmap 8590  Fincfn 8708   finSupp cfsupp 9098  0cc0 10864  cn 11965  0cn0 12225  ...cfz 13230  Basecbs 16902  s cress 16931  0gc0g 17140   Σg cgsu 17141  CRingccrg 19774  DivRingcdr 19981  Fieldcfield 19982  LModclmod 20113  LSpanclspn 20223  LVecclvec 20354  fldccnfld 20587   freeLMod cfrlm 20943   mPoly cmpl 21099   eval cevl 21271   mHomP cmhp 21309  ℙ𝕣𝕠𝕛cprjsp 40429  ℙ𝕣𝕠𝕛ncprjspn 40442  ℙ𝕣𝕠𝕛Crvcprjcrv 40455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-ofr 7526  df-om 7702  df-1st 7818  df-2nd 7819  df-supp 7963  df-tpos 8027  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-1o 8282  df-er 8473  df-ec 8475  df-qs 8479  df-map 8592  df-pm 8593  df-ixp 8661  df-en 8709  df-dom 8710  df-sdom 8711  df-fin 8712  df-fsupp 9099  df-sup 9171  df-oi 9239  df-card 9690  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-nn 11966  df-2 12028  df-3 12029  df-4 12030  df-5 12031  df-6 12032  df-7 12033  df-8 12034  df-9 12035  df-n0 12226  df-z 12312  df-dec 12429  df-uz 12574  df-fz 13231  df-fzo 13374  df-seq 13712  df-hash 14035  df-struct 16838  df-sets 16855  df-slot 16873  df-ndx 16885  df-base 16903  df-ress 16932  df-plusg 16965  df-mulr 16966  df-sca 16968  df-vsca 16969  df-ip 16970  df-tset 16971  df-ple 16972  df-ds 16974  df-hom 16976  df-cco 16977  df-0g 17142  df-gsum 17143  df-prds 17148  df-pws 17150  df-mre 17285  df-mrc 17286  df-acs 17288  df-mgm 18316  df-sgrp 18365  df-mnd 18376  df-mhm 18420  df-submnd 18421  df-grp 18570  df-minusg 18571  df-sbg 18572  df-mulg 18691  df-subg 18742  df-ghm 18822  df-cntz 18913  df-cmn 19378  df-abl 19379  df-mgp 19711  df-ur 19728  df-srg 19732  df-ring 19775  df-cring 19776  df-oppr 19852  df-dvdsr 19873  df-unit 19874  df-invr 19904  df-rnghom 19949  df-drng 19983  df-field 19984  df-subrg 20012  df-lmod 20115  df-lss 20184  df-lsp 20224  df-lvec 20355  df-sra 20424  df-rgmod 20425  df-dsmm 20929  df-frlm 20944  df-assa 21050  df-asp 21051  df-ascl 21052  df-psr 21102  df-mvr 21103  df-mpl 21104  df-evls 21272  df-evl 21273  df-mhp 21313  df-prjsp 40430  df-prjspn 40443  df-prjcrv 40456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator