| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjcrv0 | Structured version Visualization version GIF version | ||
| Description: The "curve" (zero set) corresponding to the zero polynomial contains all coordinates. (Contributed by SN, 23-Nov-2024.) |
| Ref | Expression |
|---|---|
| prjcrv0.y | ⊢ 𝑌 = ((0...𝑁) mPoly 𝐾) |
| prjcrv0.0 | ⊢ 0 = (0g‘𝑌) |
| prjcrv0.p | ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) |
| prjcrv0.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| prjcrv0.k | ⊢ (𝜑 → 𝐾 ∈ Field) |
| Ref | Expression |
|---|---|
| prjcrv0 | ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ((0...𝑁) mHomP 𝐾) = ((0...𝑁) mHomP 𝐾) | |
| 2 | eqid 2730 | . . 3 ⊢ ((0...𝑁) eval 𝐾) = ((0...𝑁) eval 𝐾) | |
| 3 | prjcrv0.p | . . 3 ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) | |
| 4 | eqid 2730 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
| 5 | prjcrv0.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 6 | prjcrv0.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 7 | fvssunirn 6894 | . . . 4 ⊢ (((0...𝑁) mHomP 𝐾)‘𝑁) ⊆ ∪ ran ((0...𝑁) mHomP 𝐾) | |
| 8 | prjcrv0.y | . . . . . 6 ⊢ 𝑌 = ((0...𝑁) mPoly 𝐾) | |
| 9 | eqid 2730 | . . . . . 6 ⊢ {ℎ ∈ (ℕ0 ↑m (0...𝑁)) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m (0...𝑁)) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 10 | prjcrv0.0 | . . . . . 6 ⊢ 0 = (0g‘𝑌) | |
| 11 | ovexd 7425 | . . . . . 6 ⊢ (𝜑 → (0...𝑁) ∈ V) | |
| 12 | 6 | fldcrngd 20658 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ CRing) |
| 13 | 12 | crnggrpd 20163 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ Grp) |
| 14 | 8, 9, 4, 10, 11, 13 | mpl0 21922 | . . . . 5 ⊢ (𝜑 → 0 = ({ℎ ∈ (ℕ0 ↑m (0...𝑁)) ∣ (◡ℎ “ ℕ) ∈ Fin} × {(0g‘𝐾)})) |
| 15 | 1, 4, 9, 11, 13, 5 | mhp0cl 22040 | . . . . 5 ⊢ (𝜑 → ({ℎ ∈ (ℕ0 ↑m (0...𝑁)) ∣ (◡ℎ “ ℕ) ∈ Fin} × {(0g‘𝐾)}) ∈ (((0...𝑁) mHomP 𝐾)‘𝑁)) |
| 16 | 14, 15 | eqeltrd 2829 | . . . 4 ⊢ (𝜑 → 0 ∈ (((0...𝑁) mHomP 𝐾)‘𝑁)) |
| 17 | 7, 16 | sselid 3947 | . . 3 ⊢ (𝜑 → 0 ∈ ∪ ran ((0...𝑁) mHomP 𝐾)) |
| 18 | 1, 2, 3, 4, 5, 6, 17 | prjcrvval 42627 | . 2 ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = {𝑝 ∈ 𝑃 ∣ ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g‘𝐾)}}) |
| 19 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 20 | ovexd 7425 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (0...𝑁) ∈ V) | |
| 21 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝐾 ∈ CRing) |
| 22 | 2, 19, 8, 4, 10, 20, 21 | evl0 42552 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (((0...𝑁) eval 𝐾)‘ 0 ) = (((Base‘𝐾) ↑m (0...𝑁)) × {(0g‘𝐾)})) |
| 23 | 22 | imaeq1d 6033 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g‘𝐾)}) “ 𝑝)) |
| 24 | eqid 2730 | . . . . . . . . . . 11 ⊢ (𝐾 freeLMod (0...𝑁)) = (𝐾 freeLMod (0...𝑁)) | |
| 25 | eqid 2730 | . . . . . . . . . . 11 ⊢ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) = ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) | |
| 26 | 6 | flddrngd 20657 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| 27 | 3, 24, 25, 5, 26 | prjspnssbas 42616 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ⊆ 𝒫 ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) |
| 28 | eqid 2730 | . . . . . . . . . . . . . . 15 ⊢ {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} = {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} | |
| 29 | 24, 19, 4, 28 | frlmbas 21671 | . . . . . . . . . . . . . 14 ⊢ ((𝐾 ∈ Field ∧ (0...𝑁) ∈ V) → {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} = (Base‘(𝐾 freeLMod (0...𝑁)))) |
| 30 | 6, 11, 29 | syl2anc 584 | . . . . . . . . . . . . 13 ⊢ (𝜑 → {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} = (Base‘(𝐾 freeLMod (0...𝑁)))) |
| 31 | ssrab2 4046 | . . . . . . . . . . . . 13 ⊢ {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} ⊆ ((Base‘𝐾) ↑m (0...𝑁)) | |
| 32 | 30, 31 | eqsstrrdi 3995 | . . . . . . . . . . . 12 ⊢ (𝜑 → (Base‘(𝐾 freeLMod (0...𝑁))) ⊆ ((Base‘𝐾) ↑m (0...𝑁))) |
| 33 | 32 | ssdifssd 4113 | . . . . . . . . . . 11 ⊢ (𝜑 → ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ⊆ ((Base‘𝐾) ↑m (0...𝑁))) |
| 34 | 33 | sspwd 4579 | . . . . . . . . . 10 ⊢ (𝜑 → 𝒫 ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ⊆ 𝒫 ((Base‘𝐾) ↑m (0...𝑁))) |
| 35 | 27, 34 | sstrd 3960 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ⊆ 𝒫 ((Base‘𝐾) ↑m (0...𝑁))) |
| 36 | 35 | sselda 3949 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ 𝒫 ((Base‘𝐾) ↑m (0...𝑁))) |
| 37 | 36 | elpwid 4575 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑝 ⊆ ((Base‘𝐾) ↑m (0...𝑁))) |
| 38 | sseqin2 4189 | . . . . . . 7 ⊢ (𝑝 ⊆ ((Base‘𝐾) ↑m (0...𝑁)) ↔ (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) = 𝑝) | |
| 39 | 37, 38 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) = 𝑝) |
| 40 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑁 ∈ ℕ0) |
| 41 | 26 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝐾 ∈ DivRing) |
| 42 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ 𝑃) | |
| 43 | 3, 24, 25, 40, 41, 42 | prjspnn0 42617 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑝 ≠ ∅) |
| 44 | 39, 43 | eqnetrd 2993 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅) |
| 45 | xpima2 6160 | . . . . 5 ⊢ ((((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅ → ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g‘𝐾)}) “ 𝑝) = {(0g‘𝐾)}) | |
| 46 | 44, 45 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g‘𝐾)}) “ 𝑝) = {(0g‘𝐾)}) |
| 47 | 23, 46 | eqtrd 2765 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g‘𝐾)}) |
| 48 | 47 | rabeqcda 3420 | . 2 ⊢ (𝜑 → {𝑝 ∈ 𝑃 ∣ ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g‘𝐾)}} = 𝑃) |
| 49 | 18, 48 | eqtrd 2765 | 1 ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 Vcvv 3450 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {csn 4592 ∪ cuni 4874 class class class wbr 5110 × cxp 5639 ◡ccnv 5640 ran crn 5642 “ cima 5644 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Fincfn 8921 finSupp cfsupp 9319 0cc0 11075 ℕcn 12193 ℕ0cn0 12449 ...cfz 13475 Basecbs 17186 0gc0g 17409 CRingccrg 20150 DivRingcdr 20645 Fieldcfield 20646 freeLMod cfrlm 21662 mPoly cmpl 21822 eval cevl 21987 mHomP cmhp 22023 ℙ𝕣𝕠𝕛ncprjspn 42609 ℙ𝕣𝕠𝕛Crvcprjcrv 42624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-drng 20647 df-field 20648 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-dsmm 21648 df-frlm 21663 df-assa 21769 df-asp 21770 df-ascl 21771 df-psr 21825 df-mvr 21826 df-mpl 21827 df-evls 21988 df-evl 21989 df-mhp 22030 df-prjsp 42597 df-prjspn 42610 df-prjcrv 42625 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |