Step | Hyp | Ref
| Expression |
1 | | eqid 2736 |
. . 3
⊢
((0...𝑁) mHomP 𝐾) = ((0...𝑁) mHomP 𝐾) |
2 | | eqid 2736 |
. . 3
⊢
((0...𝑁) eval 𝐾) = ((0...𝑁) eval 𝐾) |
3 | | prjcrv0.p |
. . 3
⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) |
4 | | eqid 2736 |
. . 3
⊢
(0g‘𝐾) = (0g‘𝐾) |
5 | | prjcrv0.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
6 | | prjcrv0.k |
. . 3
⊢ (𝜑 → 𝐾 ∈ Field) |
7 | | funmpt 6501 |
. . . . 5
⊢ Fun
(𝑛 ∈
ℕ0 ↦ {𝑓 ∈ (Base‘𝑌) ∣ (𝑓 supp (0g‘𝐾)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m (0...𝑁))
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛}}) |
8 | | prjcrv0.y |
. . . . . . 7
⊢ 𝑌 = ((0...𝑁) mPoly 𝐾) |
9 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝑌) =
(Base‘𝑌) |
10 | | eqid 2736 |
. . . . . . 7
⊢ {ℎ ∈ (ℕ0
↑m (0...𝑁))
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m (0...𝑁))
∣ (◡ℎ “ ℕ) ∈ Fin} |
11 | | ovexd 7342 |
. . . . . . 7
⊢ (𝜑 → (0...𝑁) ∈ V) |
12 | 1, 8, 9, 4, 10, 11, 6 | mhpfval 21374 |
. . . . . 6
⊢ (𝜑 → ((0...𝑁) mHomP 𝐾) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘𝑌) ∣ (𝑓 supp (0g‘𝐾)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m (0...𝑁))
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛}})) |
13 | 12 | funeqd 6485 |
. . . . 5
⊢ (𝜑 → (Fun ((0...𝑁) mHomP 𝐾) ↔ Fun (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘𝑌) ∣ (𝑓 supp (0g‘𝐾)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m (0...𝑁))
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛}}))) |
14 | 7, 13 | mpbiri 258 |
. . . 4
⊢ (𝜑 → Fun ((0...𝑁) mHomP 𝐾)) |
15 | | prjcrv0.0 |
. . . . . 6
⊢ 0 =
(0g‘𝑌) |
16 | 6 | fldcrngd 40292 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ CRing) |
17 | 16 | crnggrpd 19842 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ Grp) |
18 | 8, 10, 4, 15, 11, 17 | mpl0 21257 |
. . . . 5
⊢ (𝜑 → 0 = ({ℎ ∈ (ℕ0
↑m (0...𝑁))
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(0g‘𝐾)})) |
19 | | 0nn0 12294 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
20 | 19 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℕ0) |
21 | 1, 4, 10, 11, 17, 20 | mhp0cl 21381 |
. . . . 5
⊢ (𝜑 → ({ℎ ∈ (ℕ0
↑m (0...𝑁))
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(0g‘𝐾)})
∈ (((0...𝑁) mHomP
𝐾)‘0)) |
22 | 18, 21 | eqeltrd 2837 |
. . . 4
⊢ (𝜑 → 0 ∈ (((0...𝑁) mHomP 𝐾)‘0)) |
23 | | elunirn2 7158 |
. . . 4
⊢ ((Fun
((0...𝑁) mHomP 𝐾) ∧ 0 ∈ (((0...𝑁) mHomP 𝐾)‘0)) → 0 ∈ ∪ ran ((0...𝑁) mHomP 𝐾)) |
24 | 14, 22, 23 | syl2anc 585 |
. . 3
⊢ (𝜑 → 0 ∈ ∪ ran ((0...𝑁) mHomP 𝐾)) |
25 | 1, 2, 3, 4, 5, 6, 24 | prjcrvval 40506 |
. 2
⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = {𝑝 ∈ 𝑃 ∣ ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g‘𝐾)}}) |
26 | | eqid 2736 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
27 | | ovexd 7342 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (0...𝑁) ∈ V) |
28 | 16 | adantr 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝐾 ∈ CRing) |
29 | 2, 26, 8, 4, 15, 27, 28 | evl0 40308 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (((0...𝑁) eval 𝐾)‘ 0 ) = (((Base‘𝐾) ↑m (0...𝑁)) ×
{(0g‘𝐾)})) |
30 | 29 | imaeq1d 5978 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = ((((Base‘𝐾) ↑m (0...𝑁)) ×
{(0g‘𝐾)})
“ 𝑝)) |
31 | 3 | eleq2i 2828 |
. . . . . . . . . 10
⊢ (𝑝 ∈ 𝑃 ↔ 𝑝 ∈ (𝑁ℙ𝕣𝕠𝕛n𝐾)) |
32 | 31 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑝 ∈ 𝑃 → 𝑝 ∈ (𝑁ℙ𝕣𝕠𝕛n𝐾)) |
33 | 32 | adantl 483 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ (𝑁ℙ𝕣𝕠𝕛n𝐾)) |
34 | 5 | adantr 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑁 ∈
ℕ0) |
35 | | isfld 20045 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing)) |
36 | 35 | simplbi 499 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Field → 𝐾 ∈
DivRing) |
37 | 6, 36 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ DivRing) |
38 | 37 | adantr 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝐾 ∈ DivRing) |
39 | | prjspnval 40492 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ DivRing)
→ (𝑁ℙ𝕣𝕠𝕛n𝐾) =
(ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁)))) |
40 | 34, 38, 39 | syl2anc 585 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (𝑁ℙ𝕣𝕠𝕛n𝐾) =
(ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁)))) |
41 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢ (𝐾 freeLMod (0...𝑁)) = (𝐾 freeLMod (0...𝑁)) |
42 | 41 | frlmlvec 21013 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → (𝐾 freeLMod (0...𝑁)) ∈ LVec) |
43 | 37, 11, 42 | syl2anc 585 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾 freeLMod (0...𝑁)) ∈ LVec) |
44 | 43 | adantr 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (𝐾 freeLMod (0...𝑁)) ∈ LVec) |
45 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(0g‘(𝐾 freeLMod (0...𝑁))) = (0g‘(𝐾 freeLMod (0...𝑁))) |
46 | | eqid 2736 |
. . . . . . . . . . 11
⊢
((Base‘(𝐾
freeLMod (0...𝑁))) ∖
{(0g‘(𝐾
freeLMod (0...𝑁)))}) =
((Base‘(𝐾 freeLMod
(0...𝑁))) ∖
{(0g‘(𝐾
freeLMod (0...𝑁)))}) |
47 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(LSpan‘(𝐾
freeLMod (0...𝑁))) =
(LSpan‘(𝐾 freeLMod
(0...𝑁))) |
48 | 45, 46, 47 | prjspval2 40489 |
. . . . . . . . . 10
⊢ ((𝐾 freeLMod (0...𝑁)) ∈ LVec →
(ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) = ∪
𝑎 ∈
((Base‘(𝐾 freeLMod
(0...𝑁))) ∖
{(0g‘(𝐾
freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})}) |
49 | 44, 48 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) →
(ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) = ∪
𝑎 ∈
((Base‘(𝐾 freeLMod
(0...𝑁))) ∖
{(0g‘(𝐾
freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})}) |
50 | 40, 49 | eqtrd 2776 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = ∪
𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})}) |
51 | 33, 50 | eleqtrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ ∪
𝑎 ∈
((Base‘(𝐾 freeLMod
(0...𝑁))) ∖
{(0g‘(𝐾
freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})}) |
52 | | eliun 4935 |
. . . . . . 7
⊢ (𝑝 ∈ ∪ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})} ↔ ∃𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})}) |
53 | 51, 52 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → ∃𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})}) |
54 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢ {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} = {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} |
55 | 41, 26, 4, 54 | frlmbas 21007 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Field ∧ (0...𝑁) ∈ V) → {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} = (Base‘(𝐾 freeLMod (0...𝑁)))) |
56 | 6, 11, 55 | syl2anc 585 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} = (Base‘(𝐾 freeLMod (0...𝑁)))) |
57 | | ssrab2 4019 |
. . . . . . . . . . 11
⊢ {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g‘𝐾)} ⊆ ((Base‘𝐾) ↑m (0...𝑁)) |
58 | 56, 57 | eqsstrrdi 3981 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘(𝐾 freeLMod (0...𝑁))) ⊆ ((Base‘𝐾) ↑m (0...𝑁))) |
59 | 58 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → (Base‘(𝐾 freeLMod (0...𝑁))) ⊆ ((Base‘𝐾) ↑m (0...𝑁))) |
60 | | eldifi 4067 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) → 𝑎 ∈ (Base‘(𝐾 freeLMod (0...𝑁)))) |
61 | 60 | adantl 483 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → 𝑎 ∈ (Base‘(𝐾 freeLMod (0...𝑁)))) |
62 | 61 | adantrr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → 𝑎 ∈ (Base‘(𝐾 freeLMod (0...𝑁)))) |
63 | 59, 62 | sseldd 3927 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → 𝑎 ∈ ((Base‘𝐾) ↑m (0...𝑁))) |
64 | | velsn 4581 |
. . . . . . . . . 10
⊢ (𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})} ↔ 𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) |
65 | 64 | anbi2i 624 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})}) ↔ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}))) |
66 | 43 | lveclmodd 40295 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐾 freeLMod (0...𝑁)) ∈ LMod) |
67 | 66 | ad2antrr 724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → (𝐾 freeLMod (0...𝑁)) ∈ LMod) |
68 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(Base‘(𝐾
freeLMod (0...𝑁))) =
(Base‘(𝐾 freeLMod
(0...𝑁))) |
69 | 68, 47 | lspsnid 20300 |
. . . . . . . . . . . . 13
⊢ (((𝐾 freeLMod (0...𝑁)) ∈ LMod ∧ 𝑎 ∈ (Base‘(𝐾 freeLMod (0...𝑁)))) → 𝑎 ∈ ((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎})) |
70 | 67, 61, 69 | syl2anc 585 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → 𝑎 ∈ ((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎})) |
71 | | eldifn 4068 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) → ¬ 𝑎 ∈ {(0g‘(𝐾 freeLMod (0...𝑁)))}) |
72 | 71 | adantl 483 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → ¬ 𝑎 ∈ {(0g‘(𝐾 freeLMod (0...𝑁)))}) |
73 | 70, 72 | eldifd 3903 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → 𝑎 ∈ (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) |
74 | | eleq2 2825 |
. . . . . . . . . . 11
⊢ (𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) → (𝑎 ∈ 𝑝 ↔ 𝑎 ∈ (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}))) |
75 | 73, 74 | syl5ibrcom 247 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → (𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) → 𝑎 ∈ 𝑝)) |
76 | 75 | impr 456 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}))) → 𝑎 ∈ 𝑝) |
77 | 65, 76 | sylan2b 595 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → 𝑎 ∈ 𝑝) |
78 | 63, 77 | elind 4134 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → 𝑎 ∈ (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝)) |
79 | 78 | ne0d 4275 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅) |
80 | 53, 79 | rexlimddv 3155 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅) |
81 | | xpima2 6102 |
. . . . 5
⊢
((((Base‘𝐾)
↑m (0...𝑁))
∩ 𝑝) ≠ ∅
→ ((((Base‘𝐾)
↑m (0...𝑁))
× {(0g‘𝐾)}) “ 𝑝) = {(0g‘𝐾)}) |
82 | 80, 81 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g‘𝐾)}) “ 𝑝) = {(0g‘𝐾)}) |
83 | 30, 82 | eqtrd 2776 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g‘𝐾)}) |
84 | 83 | rabeqcda 3436 |
. 2
⊢ (𝜑 → {𝑝 ∈ 𝑃 ∣ ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g‘𝐾)}} = 𝑃) |
85 | 25, 84 | eqtrd 2776 |
1
⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃) |