Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjcrv0 Structured version   Visualization version   GIF version

Theorem prjcrv0 42665
Description: The "curve" (zero set) corresponding to the zero polynomial contains all coordinates. (Contributed by SN, 23-Nov-2024.)
Hypotheses
Ref Expression
prjcrv0.y 𝑌 = ((0...𝑁) mPoly 𝐾)
prjcrv0.0 0 = (0g𝑌)
prjcrv0.p 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
prjcrv0.n (𝜑𝑁 ∈ ℕ0)
prjcrv0.k (𝜑𝐾 ∈ Field)
Assertion
Ref Expression
prjcrv0 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃)

Proof of Theorem prjcrv0
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 ((0...𝑁) mHomP 𝐾) = ((0...𝑁) mHomP 𝐾)
2 eqid 2731 . . 3 ((0...𝑁) eval 𝐾) = ((0...𝑁) eval 𝐾)
3 prjcrv0.p . . 3 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
4 eqid 2731 . . 3 (0g𝐾) = (0g𝐾)
5 prjcrv0.n . . 3 (𝜑𝑁 ∈ ℕ0)
6 prjcrv0.k . . 3 (𝜑𝐾 ∈ Field)
7 fvssunirn 6853 . . . 4 (((0...𝑁) mHomP 𝐾)‘𝑁) ⊆ ran ((0...𝑁) mHomP 𝐾)
8 prjcrv0.y . . . . . 6 𝑌 = ((0...𝑁) mPoly 𝐾)
9 eqid 2731 . . . . . 6 { ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin}
10 prjcrv0.0 . . . . . 6 0 = (0g𝑌)
11 ovexd 7381 . . . . . 6 (𝜑 → (0...𝑁) ∈ V)
126fldcrngd 20655 . . . . . . 7 (𝜑𝐾 ∈ CRing)
1312crnggrpd 20163 . . . . . 6 (𝜑𝐾 ∈ Grp)
148, 9, 4, 10, 11, 13mpl0 21941 . . . . 5 (𝜑0 = ({ ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} × {(0g𝐾)}))
151, 4, 9, 11, 13, 5mhp0cl 22059 . . . . 5 (𝜑 → ({ ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} × {(0g𝐾)}) ∈ (((0...𝑁) mHomP 𝐾)‘𝑁))
1614, 15eqeltrd 2831 . . . 4 (𝜑0 ∈ (((0...𝑁) mHomP 𝐾)‘𝑁))
177, 16sselid 3932 . . 3 (𝜑0 ran ((0...𝑁) mHomP 𝐾))
181, 2, 3, 4, 5, 6, 17prjcrvval 42664 . 2 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = {𝑝𝑃 ∣ ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g𝐾)}})
19 eqid 2731 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
20 ovexd 7381 . . . . . 6 ((𝜑𝑝𝑃) → (0...𝑁) ∈ V)
2112adantr 480 . . . . . 6 ((𝜑𝑝𝑃) → 𝐾 ∈ CRing)
222, 19, 8, 4, 10, 20, 21evl0 42589 . . . . 5 ((𝜑𝑝𝑃) → (((0...𝑁) eval 𝐾)‘ 0 ) = (((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}))
2322imaeq1d 6008 . . . 4 ((𝜑𝑝𝑃) → ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}) “ 𝑝))
24 eqid 2731 . . . . . . . . . . 11 (𝐾 freeLMod (0...𝑁)) = (𝐾 freeLMod (0...𝑁))
25 eqid 2731 . . . . . . . . . . 11 ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) = ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})
266flddrngd 20654 . . . . . . . . . . 11 (𝜑𝐾 ∈ DivRing)
273, 24, 25, 5, 26prjspnssbas 42653 . . . . . . . . . 10 (𝜑𝑃 ⊆ 𝒫 ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}))
28 eqid 2731 . . . . . . . . . . . . . . 15 {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} = {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)}
2924, 19, 4, 28frlmbas 21690 . . . . . . . . . . . . . 14 ((𝐾 ∈ Field ∧ (0...𝑁) ∈ V) → {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} = (Base‘(𝐾 freeLMod (0...𝑁))))
306, 11, 29syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} = (Base‘(𝐾 freeLMod (0...𝑁))))
31 ssrab2 4030 . . . . . . . . . . . . 13 {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} ⊆ ((Base‘𝐾) ↑m (0...𝑁))
3230, 31eqsstrrdi 3980 . . . . . . . . . . . 12 (𝜑 → (Base‘(𝐾 freeLMod (0...𝑁))) ⊆ ((Base‘𝐾) ↑m (0...𝑁)))
3332ssdifssd 4097 . . . . . . . . . . 11 (𝜑 → ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ⊆ ((Base‘𝐾) ↑m (0...𝑁)))
3433sspwd 4563 . . . . . . . . . 10 (𝜑 → 𝒫 ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ⊆ 𝒫 ((Base‘𝐾) ↑m (0...𝑁)))
3527, 34sstrd 3945 . . . . . . . . 9 (𝜑𝑃 ⊆ 𝒫 ((Base‘𝐾) ↑m (0...𝑁)))
3635sselda 3934 . . . . . . . 8 ((𝜑𝑝𝑃) → 𝑝 ∈ 𝒫 ((Base‘𝐾) ↑m (0...𝑁)))
3736elpwid 4559 . . . . . . 7 ((𝜑𝑝𝑃) → 𝑝 ⊆ ((Base‘𝐾) ↑m (0...𝑁)))
38 sseqin2 4173 . . . . . . 7 (𝑝 ⊆ ((Base‘𝐾) ↑m (0...𝑁)) ↔ (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) = 𝑝)
3937, 38sylib 218 . . . . . 6 ((𝜑𝑝𝑃) → (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) = 𝑝)
405adantr 480 . . . . . . 7 ((𝜑𝑝𝑃) → 𝑁 ∈ ℕ0)
4126adantr 480 . . . . . . 7 ((𝜑𝑝𝑃) → 𝐾 ∈ DivRing)
42 simpr 484 . . . . . . 7 ((𝜑𝑝𝑃) → 𝑝𝑃)
433, 24, 25, 40, 41, 42prjspnn0 42654 . . . . . 6 ((𝜑𝑝𝑃) → 𝑝 ≠ ∅)
4439, 43eqnetrd 2995 . . . . 5 ((𝜑𝑝𝑃) → (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅)
45 xpima2 6131 . . . . 5 ((((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅ → ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}) “ 𝑝) = {(0g𝐾)})
4644, 45syl 17 . . . 4 ((𝜑𝑝𝑃) → ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}) “ 𝑝) = {(0g𝐾)})
4723, 46eqtrd 2766 . . 3 ((𝜑𝑝𝑃) → ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g𝐾)})
4847rabeqcda 3406 . 2 (𝜑 → {𝑝𝑃 ∣ ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g𝐾)}} = 𝑃)
4918, 48eqtrd 2766 1 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  {crab 3395  Vcvv 3436  cdif 3899  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550  {csn 4576   cuni 4859   class class class wbr 5091   × cxp 5614  ccnv 5615  ran crn 5617  cima 5619  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  0cc0 11003  cn 12122  0cn0 12378  ...cfz 13404  Basecbs 17117  0gc0g 17340  CRingccrg 20150  DivRingcdr 20642  Fieldcfield 20643   freeLMod cfrlm 21681   mPoly cmpl 21841   eval cevl 22006   mHomP cmhp 22042  ℙ𝕣𝕠𝕛ncprjspn 42646  ℙ𝕣𝕠𝕛Crvcprjcrv 42661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-ghm 19123  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-rhm 20388  df-subrng 20459  df-subrg 20483  df-drng 20644  df-field 20645  df-lmod 20793  df-lss 20863  df-lsp 20903  df-lvec 21035  df-sra 21105  df-rgmod 21106  df-dsmm 21667  df-frlm 21682  df-assa 21788  df-asp 21789  df-ascl 21790  df-psr 21844  df-mvr 21845  df-mpl 21846  df-evls 22007  df-evl 22008  df-mhp 22049  df-prjsp 42634  df-prjspn 42647  df-prjcrv 42662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator