Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjcrv0 Structured version   Visualization version   GIF version

Theorem prjcrv0 40507
Description: The "curve" (zero set) corresponding to the zero polynomial contains all coordinates. (Contributed by SN, 23-Nov-2024.)
Hypotheses
Ref Expression
prjcrv0.y 𝑌 = ((0...𝑁) mPoly 𝐾)
prjcrv0.0 0 = (0g𝑌)
prjcrv0.p 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
prjcrv0.n (𝜑𝑁 ∈ ℕ0)
prjcrv0.k (𝜑𝐾 ∈ Field)
Assertion
Ref Expression
prjcrv0 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃)

Proof of Theorem prjcrv0
Dummy variables 𝑎 𝑘 𝑝 𝑓 𝑛 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 ((0...𝑁) mHomP 𝐾) = ((0...𝑁) mHomP 𝐾)
2 eqid 2736 . . 3 ((0...𝑁) eval 𝐾) = ((0...𝑁) eval 𝐾)
3 prjcrv0.p . . 3 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
4 eqid 2736 . . 3 (0g𝐾) = (0g𝐾)
5 prjcrv0.n . . 3 (𝜑𝑁 ∈ ℕ0)
6 prjcrv0.k . . 3 (𝜑𝐾 ∈ Field)
7 funmpt 6501 . . . . 5 Fun (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘𝑌) ∣ (𝑓 supp (0g𝐾)) ⊆ {𝑔 ∈ { ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})
8 prjcrv0.y . . . . . . 7 𝑌 = ((0...𝑁) mPoly 𝐾)
9 eqid 2736 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
10 eqid 2736 . . . . . . 7 { ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin}
11 ovexd 7342 . . . . . . 7 (𝜑 → (0...𝑁) ∈ V)
121, 8, 9, 4, 10, 11, 6mhpfval 21374 . . . . . 6 (𝜑 → ((0...𝑁) mHomP 𝐾) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘𝑌) ∣ (𝑓 supp (0g𝐾)) ⊆ {𝑔 ∈ { ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
1312funeqd 6485 . . . . 5 (𝜑 → (Fun ((0...𝑁) mHomP 𝐾) ↔ Fun (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘𝑌) ∣ (𝑓 supp (0g𝐾)) ⊆ {𝑔 ∈ { ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})))
147, 13mpbiri 258 . . . 4 (𝜑 → Fun ((0...𝑁) mHomP 𝐾))
15 prjcrv0.0 . . . . . 6 0 = (0g𝑌)
166fldcrngd 40292 . . . . . . 7 (𝜑𝐾 ∈ CRing)
1716crnggrpd 19842 . . . . . 6 (𝜑𝐾 ∈ Grp)
188, 10, 4, 15, 11, 17mpl0 21257 . . . . 5 (𝜑0 = ({ ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} × {(0g𝐾)}))
19 0nn0 12294 . . . . . . 7 0 ∈ ℕ0
2019a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
211, 4, 10, 11, 17, 20mhp0cl 21381 . . . . 5 (𝜑 → ({ ∈ (ℕ0m (0...𝑁)) ∣ ( “ ℕ) ∈ Fin} × {(0g𝐾)}) ∈ (((0...𝑁) mHomP 𝐾)‘0))
2218, 21eqeltrd 2837 . . . 4 (𝜑0 ∈ (((0...𝑁) mHomP 𝐾)‘0))
23 elunirn2 7158 . . . 4 ((Fun ((0...𝑁) mHomP 𝐾) ∧ 0 ∈ (((0...𝑁) mHomP 𝐾)‘0)) → 0 ran ((0...𝑁) mHomP 𝐾))
2414, 22, 23syl2anc 585 . . 3 (𝜑0 ran ((0...𝑁) mHomP 𝐾))
251, 2, 3, 4, 5, 6, 24prjcrvval 40506 . 2 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = {𝑝𝑃 ∣ ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g𝐾)}})
26 eqid 2736 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
27 ovexd 7342 . . . . . 6 ((𝜑𝑝𝑃) → (0...𝑁) ∈ V)
2816adantr 482 . . . . . 6 ((𝜑𝑝𝑃) → 𝐾 ∈ CRing)
292, 26, 8, 4, 15, 27, 28evl0 40308 . . . . 5 ((𝜑𝑝𝑃) → (((0...𝑁) eval 𝐾)‘ 0 ) = (((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}))
3029imaeq1d 5978 . . . 4 ((𝜑𝑝𝑃) → ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}) “ 𝑝))
313eleq2i 2828 . . . . . . . . . 10 (𝑝𝑃𝑝 ∈ (𝑁ℙ𝕣𝕠𝕛n𝐾))
3231biimpi 215 . . . . . . . . 9 (𝑝𝑃𝑝 ∈ (𝑁ℙ𝕣𝕠𝕛n𝐾))
3332adantl 483 . . . . . . . 8 ((𝜑𝑝𝑃) → 𝑝 ∈ (𝑁ℙ𝕣𝕠𝕛n𝐾))
345adantr 482 . . . . . . . . . 10 ((𝜑𝑝𝑃) → 𝑁 ∈ ℕ0)
35 isfld 20045 . . . . . . . . . . . . 13 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
3635simplbi 499 . . . . . . . . . . . 12 (𝐾 ∈ Field → 𝐾 ∈ DivRing)
376, 36syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ DivRing)
3837adantr 482 . . . . . . . . . 10 ((𝜑𝑝𝑃) → 𝐾 ∈ DivRing)
39 prjspnval 40492 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))))
4034, 38, 39syl2anc 585 . . . . . . . . 9 ((𝜑𝑝𝑃) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))))
41 eqid 2736 . . . . . . . . . . . . 13 (𝐾 freeLMod (0...𝑁)) = (𝐾 freeLMod (0...𝑁))
4241frlmlvec 21013 . . . . . . . . . . . 12 ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → (𝐾 freeLMod (0...𝑁)) ∈ LVec)
4337, 11, 42syl2anc 585 . . . . . . . . . . 11 (𝜑 → (𝐾 freeLMod (0...𝑁)) ∈ LVec)
4443adantr 482 . . . . . . . . . 10 ((𝜑𝑝𝑃) → (𝐾 freeLMod (0...𝑁)) ∈ LVec)
45 eqid 2736 . . . . . . . . . . 11 (0g‘(𝐾 freeLMod (0...𝑁))) = (0g‘(𝐾 freeLMod (0...𝑁)))
46 eqid 2736 . . . . . . . . . . 11 ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) = ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})
47 eqid 2736 . . . . . . . . . . 11 (LSpan‘(𝐾 freeLMod (0...𝑁))) = (LSpan‘(𝐾 freeLMod (0...𝑁)))
4845, 46, 47prjspval2 40489 . . . . . . . . . 10 ((𝐾 freeLMod (0...𝑁)) ∈ LVec → (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) = 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})
4944, 48syl 17 . . . . . . . . 9 ((𝜑𝑝𝑃) → (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) = 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})
5040, 49eqtrd 2776 . . . . . . . 8 ((𝜑𝑝𝑃) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})
5133, 50eleqtrd 2839 . . . . . . 7 ((𝜑𝑝𝑃) → 𝑝 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})
52 eliun 4935 . . . . . . 7 (𝑝 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}){(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})} ↔ ∃𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})
5351, 52sylib 217 . . . . . 6 ((𝜑𝑝𝑃) → ∃𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})
54 eqid 2736 . . . . . . . . . . . . 13 {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} = {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)}
5541, 26, 4, 54frlmbas 21007 . . . . . . . . . . . 12 ((𝐾 ∈ Field ∧ (0...𝑁) ∈ V) → {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} = (Base‘(𝐾 freeLMod (0...𝑁))))
566, 11, 55syl2anc 585 . . . . . . . . . . 11 (𝜑 → {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} = (Base‘(𝐾 freeLMod (0...𝑁))))
57 ssrab2 4019 . . . . . . . . . . 11 {𝑘 ∈ ((Base‘𝐾) ↑m (0...𝑁)) ∣ 𝑘 finSupp (0g𝐾)} ⊆ ((Base‘𝐾) ↑m (0...𝑁))
5856, 57eqsstrrdi 3981 . . . . . . . . . 10 (𝜑 → (Base‘(𝐾 freeLMod (0...𝑁))) ⊆ ((Base‘𝐾) ↑m (0...𝑁)))
5958ad2antrr 724 . . . . . . . . 9 (((𝜑𝑝𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → (Base‘(𝐾 freeLMod (0...𝑁))) ⊆ ((Base‘𝐾) ↑m (0...𝑁)))
60 eldifi 4067 . . . . . . . . . . 11 (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) → 𝑎 ∈ (Base‘(𝐾 freeLMod (0...𝑁))))
6160adantl 483 . . . . . . . . . 10 (((𝜑𝑝𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → 𝑎 ∈ (Base‘(𝐾 freeLMod (0...𝑁))))
6261adantrr 715 . . . . . . . . 9 (((𝜑𝑝𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → 𝑎 ∈ (Base‘(𝐾 freeLMod (0...𝑁))))
6359, 62sseldd 3927 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → 𝑎 ∈ ((Base‘𝐾) ↑m (0...𝑁)))
64 velsn 4581 . . . . . . . . . 10 (𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})} ↔ 𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}))
6564anbi2i 624 . . . . . . . . 9 ((𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})}) ↔ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})))
6643lveclmodd 40295 . . . . . . . . . . . . . 14 (𝜑 → (𝐾 freeLMod (0...𝑁)) ∈ LMod)
6766ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑝𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → (𝐾 freeLMod (0...𝑁)) ∈ LMod)
68 eqid 2736 . . . . . . . . . . . . . 14 (Base‘(𝐾 freeLMod (0...𝑁))) = (Base‘(𝐾 freeLMod (0...𝑁)))
6968, 47lspsnid 20300 . . . . . . . . . . . . 13 (((𝐾 freeLMod (0...𝑁)) ∈ LMod ∧ 𝑎 ∈ (Base‘(𝐾 freeLMod (0...𝑁)))) → 𝑎 ∈ ((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}))
7067, 61, 69syl2anc 585 . . . . . . . . . . . 12 (((𝜑𝑝𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → 𝑎 ∈ ((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}))
71 eldifn 4068 . . . . . . . . . . . . 13 (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) → ¬ 𝑎 ∈ {(0g‘(𝐾 freeLMod (0...𝑁)))})
7271adantl 483 . . . . . . . . . . . 12 (((𝜑𝑝𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → ¬ 𝑎 ∈ {(0g‘(𝐾 freeLMod (0...𝑁)))})
7370, 72eldifd 3903 . . . . . . . . . . 11 (((𝜑𝑝𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → 𝑎 ∈ (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}))
74 eleq2 2825 . . . . . . . . . . 11 (𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) → (𝑎𝑝𝑎 ∈ (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})))
7573, 74syl5ibrcom 247 . . . . . . . . . 10 (((𝜑𝑝𝑃) ∧ 𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})) → (𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) → 𝑎𝑝))
7675impr 456 . . . . . . . . 9 (((𝜑𝑝𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 = (((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}))) → 𝑎𝑝)
7765, 76sylan2b 595 . . . . . . . 8 (((𝜑𝑝𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → 𝑎𝑝)
7863, 77elind 4134 . . . . . . 7 (((𝜑𝑝𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → 𝑎 ∈ (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝))
7978ne0d 4275 . . . . . 6 (((𝜑𝑝𝑃) ∧ (𝑎 ∈ ((Base‘(𝐾 freeLMod (0...𝑁))) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))}) ∧ 𝑝 ∈ {(((LSpan‘(𝐾 freeLMod (0...𝑁)))‘{𝑎}) ∖ {(0g‘(𝐾 freeLMod (0...𝑁)))})})) → (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅)
8053, 79rexlimddv 3155 . . . . 5 ((𝜑𝑝𝑃) → (((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅)
81 xpima2 6102 . . . . 5 ((((Base‘𝐾) ↑m (0...𝑁)) ∩ 𝑝) ≠ ∅ → ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}) “ 𝑝) = {(0g𝐾)})
8280, 81syl 17 . . . 4 ((𝜑𝑝𝑃) → ((((Base‘𝐾) ↑m (0...𝑁)) × {(0g𝐾)}) “ 𝑝) = {(0g𝐾)})
8330, 82eqtrd 2776 . . 3 ((𝜑𝑝𝑃) → ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g𝐾)})
8483rabeqcda 3436 . 2 (𝜑 → {𝑝𝑃 ∣ ((((0...𝑁) eval 𝐾)‘ 0 ) “ 𝑝) = {(0g𝐾)}} = 𝑃)
8525, 84eqtrd 2776 1 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1539  wcel 2104  wne 2941  wrex 3071  {crab 3284  Vcvv 3437  cdif 3889  cin 3891  wss 3892  c0 4262  {csn 4565   cuni 4844   ciun 4931   class class class wbr 5081  cmpt 5164   × cxp 5598  ccnv 5599  ran crn 5601  cima 5603  Fun wfun 6452  cfv 6458  (class class class)co 7307   supp csupp 8008  m cmap 8646  Fincfn 8764   finSupp cfsupp 9172  0cc0 10917  cn 12019  0cn0 12279  ...cfz 13285  Basecbs 16957  s cress 16986  0gc0g 17195   Σg cgsu 17196  CRingccrg 19829  DivRingcdr 20036  Fieldcfield 20037  LModclmod 20168  LSpanclspn 20278  LVecclvec 20409  fldccnfld 20642   freeLMod cfrlm 20998   mPoly cmpl 21154   eval cevl 21326   mHomP cmhp 21364  ℙ𝕣𝕠𝕛cprjsp 40477  ℙ𝕣𝕠𝕛ncprjspn 40490  ℙ𝕣𝕠𝕛Crvcprjcrv 40503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-ofr 7566  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-tpos 8073  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-ec 8531  df-qs 8535  df-map 8648  df-pm 8649  df-ixp 8717  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9173  df-sup 9245  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-dec 12484  df-uz 12629  df-fz 13286  df-fzo 13429  df-seq 13768  df-hash 14091  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-mulr 17021  df-sca 17023  df-vsca 17024  df-ip 17025  df-tset 17026  df-ple 17027  df-ds 17029  df-hom 17031  df-cco 17032  df-0g 17197  df-gsum 17198  df-prds 17203  df-pws 17205  df-mre 17340  df-mrc 17341  df-acs 17343  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-mhm 18475  df-submnd 18476  df-grp 18625  df-minusg 18626  df-sbg 18627  df-mulg 18746  df-subg 18797  df-ghm 18877  df-cntz 18968  df-cmn 19433  df-abl 19434  df-mgp 19766  df-ur 19783  df-srg 19787  df-ring 19830  df-cring 19831  df-oppr 19907  df-dvdsr 19928  df-unit 19929  df-invr 19959  df-rnghom 20004  df-drng 20038  df-field 20039  df-subrg 20067  df-lmod 20170  df-lss 20239  df-lsp 20279  df-lvec 20410  df-sra 20479  df-rgmod 20480  df-dsmm 20984  df-frlm 20999  df-assa 21105  df-asp 21106  df-ascl 21107  df-psr 21157  df-mvr 21158  df-mpl 21159  df-evls 21327  df-evl 21328  df-mhp 21368  df-prjsp 40478  df-prjspn 40491  df-prjcrv 40504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator