![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrab | Structured version Visualization version GIF version |
Description: A variable not free in a wff remains so in a restricted class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker nfrabw 3467 when possible. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfrab.1 | ⊢ Ⅎ𝑥𝜑 |
nfrab.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrab | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3432 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | nftru 1805 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
3 | nfrab.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfcri 2889 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
5 | eleq1w 2815 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
6 | 4, 5 | dvelimnf 2451 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
7 | nfrab.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝜑 | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) |
9 | 6, 8 | nfand 1899 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
10 | 9 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
11 | 2, 10 | nfabd2 2928 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
12 | 11 | mptru 1547 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
13 | 1, 12 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1538 ⊤wtru 1541 Ⅎwnf 1784 ∈ wcel 2105 {cab 2708 Ⅎwnfc 2882 {crab 3431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-13 2370 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-rab 3432 |
This theorem is referenced by: elfvmptrab1 7025 elovmporab1 7658 |
Copyright terms: Public domain | W3C validator |