MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrab Structured version   Visualization version   GIF version

Theorem nfrab 3320
Description: A variable not free in a wff remains so in a restricted class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfrabw 3318 when possible. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfrab.1 𝑥𝜑
nfrab.2 𝑥𝐴
Assertion
Ref Expression
nfrab 𝑥{𝑦𝐴𝜑}

Proof of Theorem nfrab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3073 . 2 {𝑦𝐴𝜑} = {𝑦 ∣ (𝑦𝐴𝜑)}
2 nftru 1807 . . . 4 𝑦
3 nfrab.2 . . . . . . . 8 𝑥𝐴
43nfcri 2894 . . . . . . 7 𝑥 𝑧𝐴
5 eleq1w 2821 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
64, 5dvelimnf 2453 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦𝐴)
7 nfrab.1 . . . . . . 7 𝑥𝜑
87a1i 11 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑)
96, 8nfand 1900 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(𝑦𝐴𝜑))
109adantl 482 . . . 4 ((⊤ ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦𝐴𝜑))
112, 10nfabd2 2933 . . 3 (⊤ → 𝑥{𝑦 ∣ (𝑦𝐴𝜑)})
1211mptru 1546 . 2 𝑥{𝑦 ∣ (𝑦𝐴𝜑)}
131, 12nfcxfr 2905 1 𝑥{𝑦𝐴𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  wal 1537  wtru 1540  wnf 1786  wcel 2106  {cab 2715  wnfc 2887  {crab 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073
This theorem is referenced by:  elfvmptrab1  6902  elovmporab1  7517
  Copyright terms: Public domain W3C validator