Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsclnbgr6 Structured version   Visualization version   GIF version

Theorem dfsclnbgr6 47838
Description: Alternate definition of a semiclosed neighborhood of a vertex as a union of a semiopen neighborhood and the vertex itself if there is a loop at this vertex. (Contributed by AV, 17-May-2025.)
Hypotheses
Ref Expression
dfvopnbgr2.v 𝑉 = (Vtx‘𝐺)
dfvopnbgr2.e 𝐸 = (Edg‘𝐺)
dfvopnbgr2.u 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
dfsclnbgr6.s 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
Assertion
Ref Expression
dfsclnbgr6 (𝑁𝑉𝑆 = (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒}))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑛,𝐸   𝑛,𝐺
Allowed substitution hints:   𝑆(𝑒,𝑛)   𝑈(𝑒,𝑛)

Proof of Theorem dfsclnbgr6
StepHypRef Expression
1 simpr 484 . . . . . . . . . . 11 ((𝑁𝑒𝑛𝑒) → 𝑛𝑒)
21anim1i 615 . . . . . . . . . 10 (((𝑁𝑒𝑛𝑒) ∧ 𝑛 = 𝑁) → (𝑛𝑒𝑛 = 𝑁))
32olcd 874 . . . . . . . . 9 (((𝑁𝑒𝑛𝑒) ∧ 𝑛 = 𝑁) → (((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛𝑒𝑛 = 𝑁)))
43expcom 413 . . . . . . . 8 (𝑛 = 𝑁 → ((𝑁𝑒𝑛𝑒) → (((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛𝑒𝑛 = 𝑁))))
5 3anass 1094 . . . . . . . . . . . 12 ((𝑛𝑁𝑁𝑒𝑛𝑒) ↔ (𝑛𝑁 ∧ (𝑁𝑒𝑛𝑒)))
65biimpri 228 . . . . . . . . . . 11 ((𝑛𝑁 ∧ (𝑁𝑒𝑛𝑒)) → (𝑛𝑁𝑁𝑒𝑛𝑒))
76orcd 873 . . . . . . . . . 10 ((𝑛𝑁 ∧ (𝑁𝑒𝑛𝑒)) → ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})))
87orcd 873 . . . . . . . . 9 ((𝑛𝑁 ∧ (𝑁𝑒𝑛𝑒)) → (((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛𝑒𝑛 = 𝑁)))
98ex 412 . . . . . . . 8 (𝑛𝑁 → ((𝑁𝑒𝑛𝑒) → (((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛𝑒𝑛 = 𝑁))))
104, 9pm2.61ine 3016 . . . . . . 7 ((𝑁𝑒𝑛𝑒) → (((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛𝑒𝑛 = 𝑁)))
11 3simpc 1150 . . . . . . . . . 10 ((𝑛𝑁𝑁𝑒𝑛𝑒) → (𝑁𝑒𝑛𝑒))
1211a1i 11 . . . . . . . . 9 (𝑁𝑉 → ((𝑛𝑁𝑁𝑒𝑛𝑒) → (𝑁𝑒𝑛𝑒)))
13 vsnid 4644 . . . . . . . . . . . . . . . 16 𝑛 ∈ {𝑛}
1413a1i 11 . . . . . . . . . . . . . . 15 (𝑒 = {𝑛} → 𝑛 ∈ {𝑛})
15 eleq2 2824 . . . . . . . . . . . . . . 15 (𝑒 = {𝑛} → (𝑛𝑒𝑛 ∈ {𝑛}))
1614, 15mpbird 257 . . . . . . . . . . . . . 14 (𝑒 = {𝑛} → 𝑛𝑒)
1716adantl 481 . . . . . . . . . . . . 13 ((𝑛 = 𝑁𝑒 = {𝑛}) → 𝑛𝑒)
18 eleq1 2823 . . . . . . . . . . . . . . 15 (𝑛 = 𝑁 → (𝑛𝑒𝑁𝑒))
1918bicomd 223 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → (𝑁𝑒𝑛𝑒))
2019adantr 480 . . . . . . . . . . . . 13 ((𝑛 = 𝑁𝑒 = {𝑛}) → (𝑁𝑒𝑛𝑒))
2117, 20mpbird 257 . . . . . . . . . . . 12 ((𝑛 = 𝑁𝑒 = {𝑛}) → 𝑁𝑒)
2221adantl 481 . . . . . . . . . . 11 ((𝑁𝑉 ∧ (𝑛 = 𝑁𝑒 = {𝑛})) → 𝑁𝑒)
2317adantl 481 . . . . . . . . . . 11 ((𝑁𝑉 ∧ (𝑛 = 𝑁𝑒 = {𝑛})) → 𝑛𝑒)
2422, 23jca 511 . . . . . . . . . 10 ((𝑁𝑉 ∧ (𝑛 = 𝑁𝑒 = {𝑛})) → (𝑁𝑒𝑛𝑒))
2524ex 412 . . . . . . . . 9 (𝑁𝑉 → ((𝑛 = 𝑁𝑒 = {𝑛}) → (𝑁𝑒𝑛𝑒)))
2612, 25jaod 859 . . . . . . . 8 (𝑁𝑉 → (((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) → (𝑁𝑒𝑛𝑒)))
2718biimpac 478 . . . . . . . . . 10 ((𝑛𝑒𝑛 = 𝑁) → 𝑁𝑒)
28 simpl 482 . . . . . . . . . 10 ((𝑛𝑒𝑛 = 𝑁) → 𝑛𝑒)
2927, 28jca 511 . . . . . . . . 9 ((𝑛𝑒𝑛 = 𝑁) → (𝑁𝑒𝑛𝑒))
3029a1i 11 . . . . . . . 8 (𝑁𝑉 → ((𝑛𝑒𝑛 = 𝑁) → (𝑁𝑒𝑛𝑒)))
3126, 30jaod 859 . . . . . . 7 (𝑁𝑉 → ((((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛𝑒𝑛 = 𝑁)) → (𝑁𝑒𝑛𝑒)))
3210, 31impbid2 226 . . . . . 6 (𝑁𝑉 → ((𝑁𝑒𝑛𝑒) ↔ (((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛𝑒𝑛 = 𝑁))))
3332rexbidv 3165 . . . . 5 (𝑁𝑉 → (∃𝑒𝐸 (𝑁𝑒𝑛𝑒) ↔ ∃𝑒𝐸 (((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛𝑒𝑛 = 𝑁))))
34 r19.43 3109 . . . . . 6 (∃𝑒𝐸 (((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛𝑒𝑛 = 𝑁)) ↔ (∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ ∃𝑒𝐸 (𝑛𝑒𝑛 = 𝑁)))
3534a1i 11 . . . . 5 (𝑁𝑉 → (∃𝑒𝐸 (((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛𝑒𝑛 = 𝑁)) ↔ (∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ ∃𝑒𝐸 (𝑛𝑒𝑛 = 𝑁))))
36 r19.41v 3175 . . . . . . . 8 (∃𝑒𝐸 (𝑛𝑒𝑛 = 𝑁) ↔ (∃𝑒𝐸 𝑛𝑒𝑛 = 𝑁))
3736biancomi 462 . . . . . . 7 (∃𝑒𝐸 (𝑛𝑒𝑛 = 𝑁) ↔ (𝑛 = 𝑁 ∧ ∃𝑒𝐸 𝑛𝑒))
3837a1i 11 . . . . . 6 (𝑁𝑉 → (∃𝑒𝐸 (𝑛𝑒𝑛 = 𝑁) ↔ (𝑛 = 𝑁 ∧ ∃𝑒𝐸 𝑛𝑒)))
3938orbi2d 915 . . . . 5 (𝑁𝑉 → ((∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ ∃𝑒𝐸 (𝑛𝑒𝑛 = 𝑁)) ↔ (∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒𝐸 𝑛𝑒))))
4033, 35, 393bitrd 305 . . . 4 (𝑁𝑉 → (∃𝑒𝐸 (𝑁𝑒𝑛𝑒) ↔ (∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒𝐸 𝑛𝑒))))
4140rabbidv 3428 . . 3 (𝑁𝑉 → {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)} = {𝑛𝑉 ∣ (∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒𝐸 𝑛𝑒))})
42 unrab 4295 . . . 4 ({𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))} ∪ {𝑛𝑉 ∣ (𝑛 = 𝑁 ∧ ∃𝑒𝐸 𝑛𝑒)}) = {𝑛𝑉 ∣ (∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒𝐸 𝑛𝑒))}
43 rabsneq 4625 . . . . . 6 (𝑁𝑉 → {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒} = {𝑛𝑉 ∣ (𝑛 = 𝑁 ∧ ∃𝑒𝐸 𝑛𝑒)})
4443eqcomd 2742 . . . . 5 (𝑁𝑉 → {𝑛𝑉 ∣ (𝑛 = 𝑁 ∧ ∃𝑒𝐸 𝑛𝑒)} = {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒})
4544uneq2d 4148 . . . 4 (𝑁𝑉 → ({𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))} ∪ {𝑛𝑉 ∣ (𝑛 = 𝑁 ∧ ∃𝑒𝐸 𝑛𝑒)}) = ({𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))} ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒}))
4642, 45eqtr3id 2785 . . 3 (𝑁𝑉 → {𝑛𝑉 ∣ (∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒𝐸 𝑛𝑒))} = ({𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))} ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒}))
4741, 46eqtrd 2771 . 2 (𝑁𝑉 → {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)} = ({𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))} ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒}))
48 dfvopnbgr2.v . . 3 𝑉 = (Vtx‘𝐺)
49 dfsclnbgr6.s . . 3 𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒}
50 dfvopnbgr2.e . . 3 𝐸 = (Edg‘𝐺)
5148, 49, 50dfsclnbgr2 47826 . 2 (𝑁𝑉𝑆 = {𝑛𝑉 ∣ ∃𝑒𝐸 (𝑁𝑒𝑛𝑒)})
52 dfvopnbgr2.u . . . 4 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
5348, 50, 52dfvopnbgr2 47833 . . 3 (𝑁𝑉𝑈 = {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))})
5453uneq1d 4147 . 2 (𝑁𝑉 → (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒}) = ({𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))} ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒}))
5547, 51, 543eqtr4d 2781 1 (𝑁𝑉𝑆 = (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒𝐸 𝑛𝑒}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061  {crab 3420  cun 3929  wss 3931  {csn 4606  {cpr 4608  cfv 6536  (class class class)co 7410  Vtxcvtx 28980  Edgcedg 29031   NeighbVtx cnbgr 29316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-nbgr 29317
This theorem is referenced by:  dfnbgrss2  47839
  Copyright terms: Public domain W3C validator