Proof of Theorem dfsclnbgr6
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) → 𝑛 ∈ 𝑒) |
| 2 | 1 | anim1i 615 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∧ 𝑛 = 𝑁) → (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)) |
| 3 | 2 | olcd 874 |
. . . . . . . . 9
⊢ (((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∧ 𝑛 = 𝑁) → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁))) |
| 4 | 3 | expcom 413 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)))) |
| 5 | | 3anass 1094 |
. . . . . . . . . . . 12
⊢ ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ (𝑛 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
| 6 | 5 | biimpri 228 |
. . . . . . . . . . 11
⊢ ((𝑛 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)) → (𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)) |
| 7 | 6 | orcd 873 |
. . . . . . . . . 10
⊢ ((𝑛 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)) → ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))) |
| 8 | 7 | orcd 873 |
. . . . . . . . 9
⊢ ((𝑛 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)) → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁))) |
| 9 | 8 | ex 412 |
. . . . . . . 8
⊢ (𝑛 ≠ 𝑁 → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)))) |
| 10 | 4, 9 | pm2.61ine 3016 |
. . . . . . 7
⊢ ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁))) |
| 11 | | 3simpc 1150 |
. . . . . . . . . 10
⊢ ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)) |
| 12 | 11 | a1i 11 |
. . . . . . . . 9
⊢ (𝑁 ∈ 𝑉 → ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
| 13 | | vsnid 4644 |
. . . . . . . . . . . . . . . 16
⊢ 𝑛 ∈ {𝑛} |
| 14 | 13 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = {𝑛} → 𝑛 ∈ {𝑛}) |
| 15 | | eleq2 2824 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = {𝑛} → (𝑛 ∈ 𝑒 ↔ 𝑛 ∈ {𝑛})) |
| 16 | 14, 15 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = {𝑛} → 𝑛 ∈ 𝑒) |
| 17 | 16 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑛 = 𝑁 ∧ 𝑒 = {𝑛}) → 𝑛 ∈ 𝑒) |
| 18 | | eleq1 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑁 → (𝑛 ∈ 𝑒 ↔ 𝑁 ∈ 𝑒)) |
| 19 | 18 | bicomd 223 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑁 → (𝑁 ∈ 𝑒 ↔ 𝑛 ∈ 𝑒)) |
| 20 | 19 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑛 = 𝑁 ∧ 𝑒 = {𝑛}) → (𝑁 ∈ 𝑒 ↔ 𝑛 ∈ 𝑒)) |
| 21 | 17, 20 | mpbird 257 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑁 ∧ 𝑒 = {𝑛}) → 𝑁 ∈ 𝑒) |
| 22 | 21 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) → 𝑁 ∈ 𝑒) |
| 23 | 17 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) → 𝑛 ∈ 𝑒) |
| 24 | 22, 23 | jca 511 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)) |
| 25 | 24 | ex 412 |
. . . . . . . . 9
⊢ (𝑁 ∈ 𝑉 → ((𝑛 = 𝑁 ∧ 𝑒 = {𝑛}) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
| 26 | 12, 25 | jaod 859 |
. . . . . . . 8
⊢ (𝑁 ∈ 𝑉 → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
| 27 | 18 | biimpac 478 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁) → 𝑁 ∈ 𝑒) |
| 28 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁) → 𝑛 ∈ 𝑒) |
| 29 | 27, 28 | jca 511 |
. . . . . . . . 9
⊢ ((𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)) |
| 30 | 29 | a1i 11 |
. . . . . . . 8
⊢ (𝑁 ∈ 𝑉 → ((𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
| 31 | 26, 30 | jaod 859 |
. . . . . . 7
⊢ (𝑁 ∈ 𝑉 → ((((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)) → (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
| 32 | 10, 31 | impbid2 226 |
. . . . . 6
⊢ (𝑁 ∈ 𝑉 → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)))) |
| 33 | 32 | rexbidv 3165 |
. . . . 5
⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ ∃𝑒 ∈ 𝐸 (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)))) |
| 34 | | r19.43 3109 |
. . . . . 6
⊢
(∃𝑒 ∈
𝐸 (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)) ↔ (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ ∃𝑒 ∈ 𝐸 (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁))) |
| 35 | 34 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)) ↔ (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ ∃𝑒 ∈ 𝐸 (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)))) |
| 36 | | r19.41v 3175 |
. . . . . . . 8
⊢
(∃𝑒 ∈
𝐸 (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁) ↔ (∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)) |
| 37 | 36 | biancomi 462 |
. . . . . . 7
⊢
(∃𝑒 ∈
𝐸 (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁) ↔ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒)) |
| 38 | 37 | a1i 11 |
. . . . . 6
⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁) ↔ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒))) |
| 39 | 38 | orbi2d 915 |
. . . . 5
⊢ (𝑁 ∈ 𝑉 → ((∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ ∃𝑒 ∈ 𝐸 (𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁)) ↔ (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒)))) |
| 40 | 33, 35, 39 | 3bitrd 305 |
. . . 4
⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒)))) |
| 41 | 40 | rabbidv 3428 |
. . 3
⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} = {𝑛 ∈ 𝑉 ∣ (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒))}) |
| 42 | | unrab 4295 |
. . . 4
⊢ ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∪ {𝑛 ∈ 𝑉 ∣ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒)}) = {𝑛 ∈ 𝑉 ∣ (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒))} |
| 43 | | rabsneq 4625 |
. . . . . 6
⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒} = {𝑛 ∈ 𝑉 ∣ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒)}) |
| 44 | 43 | eqcomd 2742 |
. . . . 5
⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ 𝑉 ∣ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒)} = {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒}) |
| 45 | 44 | uneq2d 4148 |
. . . 4
⊢ (𝑁 ∈ 𝑉 → ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∪ {𝑛 ∈ 𝑉 ∣ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒)}) = ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒})) |
| 46 | 42, 45 | eqtr3id 2785 |
. . 3
⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ 𝑉 ∣ (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ∨ (𝑛 = 𝑁 ∧ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒))} = ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒})) |
| 47 | 41, 46 | eqtrd 2771 |
. 2
⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)} = ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒})) |
| 48 | | dfvopnbgr2.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
| 49 | | dfsclnbgr6.s |
. . 3
⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} |
| 50 | | dfvopnbgr2.e |
. . 3
⊢ 𝐸 = (Edg‘𝐺) |
| 51 | 48, 49, 50 | dfsclnbgr2 47826 |
. 2
⊢ (𝑁 ∈ 𝑉 → 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
| 52 | | dfvopnbgr2.u |
. . . 4
⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} |
| 53 | 48, 50, 52 | dfvopnbgr2 47833 |
. . 3
⊢ (𝑁 ∈ 𝑉 → 𝑈 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}) |
| 54 | 53 | uneq1d 4147 |
. 2
⊢ (𝑁 ∈ 𝑉 → (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒}) = ({𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒})) |
| 55 | 47, 51, 54 | 3eqtr4d 2781 |
1
⊢ (𝑁 ∈ 𝑉 → 𝑆 = (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒})) |