MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabxfr Structured version   Visualization version   GIF version

Theorem rabxfr 5354
Description: Membership in a restricted class abstraction after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the formula defining the class abstraction. (Contributed by NM, 10-Jun-2005.)
Hypotheses
Ref Expression
rabxfr.1 𝑦𝐵
rabxfr.2 𝑦𝐶
rabxfr.3 (𝑦𝐷𝐴𝐷)
rabxfr.4 (𝑥 = 𝐴 → (𝜑𝜓))
rabxfr.5 (𝑦 = 𝐵𝐴 = 𝐶)
Assertion
Ref Expression
rabxfr (𝐵𝐷 → (𝐶 ∈ {𝑥𝐷𝜑} ↔ 𝐵 ∈ {𝑦𝐷𝜓}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐷   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem rabxfr
StepHypRef Expression
1 tru 1545 . 2
2 rabxfr.1 . . 3 𝑦𝐵
3 rabxfr.2 . . 3 𝑦𝐶
4 rabxfr.3 . . . 4 (𝑦𝐷𝐴𝐷)
54adantl 481 . . 3 ((⊤ ∧ 𝑦𝐷) → 𝐴𝐷)
6 rabxfr.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
7 rabxfr.5 . . 3 (𝑦 = 𝐵𝐴 = 𝐶)
82, 3, 5, 6, 7rabxfrd 5353 . 2 ((⊤ ∧ 𝐵𝐷) → (𝐶 ∈ {𝑥𝐷𝜑} ↔ 𝐵 ∈ {𝑦𝐷𝜓}))
91, 8mpan 690 1 (𝐵𝐷 → (𝐶 ∈ {𝑥𝐷𝜑} ↔ 𝐵 ∈ {𝑦𝐷𝜓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wtru 1542  wcel 2110  wnfc 2877  {crab 3393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3394  df-v 3436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator