| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabxfr | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted class abstraction after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the formula defining the class abstraction. (Contributed by NM, 10-Jun-2005.) |
| Ref | Expression |
|---|---|
| rabxfr.1 | ⊢ Ⅎ𝑦𝐵 |
| rabxfr.2 | ⊢ Ⅎ𝑦𝐶 |
| rabxfr.3 | ⊢ (𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷) |
| rabxfr.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| rabxfr.5 | ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) |
| Ref | Expression |
|---|---|
| rabxfr | ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜓})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1543 | . 2 ⊢ ⊤ | |
| 2 | rabxfr.1 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
| 3 | rabxfr.2 | . . 3 ⊢ Ⅎ𝑦𝐶 | |
| 4 | rabxfr.3 | . . . 4 ⊢ (𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ 𝐷) → 𝐴 ∈ 𝐷) |
| 6 | rabxfr.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | rabxfr.5 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) | |
| 8 | 2, 3, 5, 6, 7 | rabxfrd 5397 | . 2 ⊢ ((⊤ ∧ 𝐵 ∈ 𝐷) → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜓})) |
| 9 | 1, 8 | mpan 690 | 1 ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜓})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 Ⅎwnfc 2882 {crab 3419 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3420 df-v 3465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |