MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuhypd Structured version   Visualization version   GIF version

Theorem reuhypd 5310
Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd 7137. (Contributed by NM, 16-Jan-2012.)
Hypotheses
Ref Expression
reuhypd.1 ((𝜑𝑥𝐶) → 𝐵𝐶)
reuhypd.2 ((𝜑𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
Assertion
Ref Expression
reuhypd ((𝜑𝑥𝐶) → ∃!𝑦𝐶 𝑥 = 𝐴)
Distinct variable groups:   𝜑,𝑦   𝑦,𝐵   𝑦,𝐶   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem reuhypd
StepHypRef Expression
1 reuhypd.1 . . . . 5 ((𝜑𝑥𝐶) → 𝐵𝐶)
21elexd 3512 . . . 4 ((𝜑𝑥𝐶) → 𝐵 ∈ V)
3 eueq 3696 . . . 4 (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵)
42, 3sylib 219 . . 3 ((𝜑𝑥𝐶) → ∃!𝑦 𝑦 = 𝐵)
5 eleq1 2897 . . . . . . 7 (𝑦 = 𝐵 → (𝑦𝐶𝐵𝐶))
61, 5syl5ibrcom 248 . . . . . 6 ((𝜑𝑥𝐶) → (𝑦 = 𝐵𝑦𝐶))
76pm4.71rd 563 . . . . 5 ((𝜑𝑥𝐶) → (𝑦 = 𝐵 ↔ (𝑦𝐶𝑦 = 𝐵)))
8 reuhypd.2 . . . . . . 7 ((𝜑𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
983expa 1110 . . . . . 6 (((𝜑𝑥𝐶) ∧ 𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
109pm5.32da 579 . . . . 5 ((𝜑𝑥𝐶) → ((𝑦𝐶𝑥 = 𝐴) ↔ (𝑦𝐶𝑦 = 𝐵)))
117, 10bitr4d 283 . . . 4 ((𝜑𝑥𝐶) → (𝑦 = 𝐵 ↔ (𝑦𝐶𝑥 = 𝐴)))
1211eubidv 2665 . . 3 ((𝜑𝑥𝐶) → (∃!𝑦 𝑦 = 𝐵 ↔ ∃!𝑦(𝑦𝐶𝑥 = 𝐴)))
134, 12mpbid 233 . 2 ((𝜑𝑥𝐶) → ∃!𝑦(𝑦𝐶𝑥 = 𝐴))
14 df-reu 3142 . 2 (∃!𝑦𝐶 𝑥 = 𝐴 ↔ ∃!𝑦(𝑦𝐶𝑥 = 𝐴))
1513, 14sylibr 235 1 ((𝜑𝑥𝐶) → ∃!𝑦𝐶 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  ∃!weu 2646  ∃!wreu 3137  Vcvv 3492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-3an 1081  df-ex 1772  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-reu 3142  df-v 3494
This theorem is referenced by:  reuhyp  5311  riotaocN  36225
  Copyright terms: Public domain W3C validator