| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reuhypd | Structured version Visualization version GIF version | ||
| Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd 7345. (Contributed by NM, 16-Jan-2012.) |
| Ref | Expression |
|---|---|
| reuhypd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) |
| reuhypd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) |
| Ref | Expression |
|---|---|
| reuhypd | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuhypd.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) | |
| 2 | 1 | elexd 3461 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ V) |
| 3 | eueq 3663 | . . . 4 ⊢ (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 𝑦 = 𝐵) |
| 5 | eleq1 2821 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 6 | 1, 5 | syl5ibrcom 247 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑦 = 𝐵 → 𝑦 ∈ 𝐶)) |
| 7 | 6 | pm4.71rd 562 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑦 = 𝐵 ↔ (𝑦 ∈ 𝐶 ∧ 𝑦 = 𝐵))) |
| 8 | reuhypd.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) | |
| 9 | 8 | 3expa 1118 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) |
| 10 | 9 | pm5.32da 579 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) ↔ (𝑦 ∈ 𝐶 ∧ 𝑦 = 𝐵))) |
| 11 | 7, 10 | bitr4d 282 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑦 = 𝐵 ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴))) |
| 12 | 11 | eubidv 2583 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (∃!𝑦 𝑦 = 𝐵 ↔ ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴))) |
| 13 | 4, 12 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) |
| 14 | df-reu 3348 | . 2 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = 𝐴 ↔ ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴)) | |
| 15 | 13, 14 | sylibr 234 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃!weu 2565 ∃!wreu 3345 Vcvv 3437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-reu 3348 df-v 3439 |
| This theorem is referenced by: reuhyp 5362 riotaocN 39331 |
| Copyright terms: Public domain | W3C validator |