MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabxfrd Structured version   Visualization version   GIF version

Theorem rabxfrd 5335
Description: Membership in a restricted class abstraction after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the formula defining the class abstraction. (Contributed by NM, 16-Jan-2012.)
Hypotheses
Ref Expression
rabxfrd.1 𝑦𝐵
rabxfrd.2 𝑦𝐶
rabxfrd.3 ((𝜑𝑦𝐷) → 𝐴𝐷)
rabxfrd.4 (𝑥 = 𝐴 → (𝜓𝜒))
rabxfrd.5 (𝑦 = 𝐵𝐴 = 𝐶)
Assertion
Ref Expression
rabxfrd ((𝜑𝐵𝐷) → (𝐶 ∈ {𝑥𝐷𝜓} ↔ 𝐵 ∈ {𝑦𝐷𝜒}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐷   𝜑,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem rabxfrd
StepHypRef Expression
1 rabxfrd.3 . . . . . . . . . . 11 ((𝜑𝑦𝐷) → 𝐴𝐷)
21ex 412 . . . . . . . . . 10 (𝜑 → (𝑦𝐷𝐴𝐷))
3 ibibr 368 . . . . . . . . . 10 ((𝑦𝐷𝐴𝐷) ↔ (𝑦𝐷 → (𝐴𝐷𝑦𝐷)))
42, 3sylib 217 . . . . . . . . 9 (𝜑 → (𝑦𝐷 → (𝐴𝐷𝑦𝐷)))
54imp 406 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝐴𝐷𝑦𝐷))
65anbi1d 629 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝐴𝐷𝜒) ↔ (𝑦𝐷𝜒)))
7 rabxfrd.4 . . . . . . . 8 (𝑥 = 𝐴 → (𝜓𝜒))
87elrab 3617 . . . . . . 7 (𝐴 ∈ {𝑥𝐷𝜓} ↔ (𝐴𝐷𝜒))
9 rabid 3304 . . . . . . 7 (𝑦 ∈ {𝑦𝐷𝜒} ↔ (𝑦𝐷𝜒))
106, 8, 93bitr4g 313 . . . . . 6 ((𝜑𝑦𝐷) → (𝐴 ∈ {𝑥𝐷𝜓} ↔ 𝑦 ∈ {𝑦𝐷𝜒}))
1110rabbidva 3402 . . . . 5 (𝜑 → {𝑦𝐷𝐴 ∈ {𝑥𝐷𝜓}} = {𝑦𝐷𝑦 ∈ {𝑦𝐷𝜒}})
1211eleq2d 2824 . . . 4 (𝜑 → (𝐵 ∈ {𝑦𝐷𝐴 ∈ {𝑥𝐷𝜓}} ↔ 𝐵 ∈ {𝑦𝐷𝑦 ∈ {𝑦𝐷𝜒}}))
13 rabxfrd.1 . . . . 5 𝑦𝐵
14 nfcv 2906 . . . . 5 𝑦𝐷
15 rabxfrd.2 . . . . . 6 𝑦𝐶
1615nfel1 2922 . . . . 5 𝑦 𝐶 ∈ {𝑥𝐷𝜓}
17 rabxfrd.5 . . . . . 6 (𝑦 = 𝐵𝐴 = 𝐶)
1817eleq1d 2823 . . . . 5 (𝑦 = 𝐵 → (𝐴 ∈ {𝑥𝐷𝜓} ↔ 𝐶 ∈ {𝑥𝐷𝜓}))
1913, 14, 16, 18elrabf 3613 . . . 4 (𝐵 ∈ {𝑦𝐷𝐴 ∈ {𝑥𝐷𝜓}} ↔ (𝐵𝐷𝐶 ∈ {𝑥𝐷𝜓}))
20 nfrab1 3310 . . . . . 6 𝑦{𝑦𝐷𝜒}
2113, 20nfel 2920 . . . . 5 𝑦 𝐵 ∈ {𝑦𝐷𝜒}
22 eleq1 2826 . . . . 5 (𝑦 = 𝐵 → (𝑦 ∈ {𝑦𝐷𝜒} ↔ 𝐵 ∈ {𝑦𝐷𝜒}))
2313, 14, 21, 22elrabf 3613 . . . 4 (𝐵 ∈ {𝑦𝐷𝑦 ∈ {𝑦𝐷𝜒}} ↔ (𝐵𝐷𝐵 ∈ {𝑦𝐷𝜒}))
2412, 19, 233bitr3g 312 . . 3 (𝜑 → ((𝐵𝐷𝐶 ∈ {𝑥𝐷𝜓}) ↔ (𝐵𝐷𝐵 ∈ {𝑦𝐷𝜒})))
25 pm5.32 573 . . 3 ((𝐵𝐷 → (𝐶 ∈ {𝑥𝐷𝜓} ↔ 𝐵 ∈ {𝑦𝐷𝜒})) ↔ ((𝐵𝐷𝐶 ∈ {𝑥𝐷𝜓}) ↔ (𝐵𝐷𝐵 ∈ {𝑦𝐷𝜒})))
2624, 25sylibr 233 . 2 (𝜑 → (𝐵𝐷 → (𝐶 ∈ {𝑥𝐷𝜓} ↔ 𝐵 ∈ {𝑦𝐷𝜒})))
2726imp 406 1 ((𝜑𝐵𝐷) → (𝐶 ∈ {𝑥𝐷𝜓} ↔ 𝐵 ∈ {𝑦𝐷𝜒}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wnfc 2886  {crab 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424
This theorem is referenced by:  rabxfr  5336  riotaxfrd  7247
  Copyright terms: Public domain W3C validator