Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneix13 Structured version   Visualization version   GIF version

Theorem ntrneix13 43803
Description: The closure of the union of any pair is equal to the union of closures if and only if the union of any pair belonging to the convergents of a point if equivalent to at least one of the pain belonging to the convergents of that point. (Contributed by RP, 19-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneix13 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑡,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑡,𝑖,𝑗,𝑠)   𝑁(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneix13
StepHypRef Expression
1 dfss3 3967 . . . . . . . . 9 ((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥 ∈ (𝐼‘(𝑠𝑡))𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))
2 ntrnei.o . . . . . . . . . . . . . . 15 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 ntrnei.f . . . . . . . . . . . . . . 15 𝐹 = (𝒫 𝐵𝑂𝐵)
4 ntrnei.r . . . . . . . . . . . . . . 15 (𝜑𝐼𝐹𝑁)
52, 3, 4ntrneiiex 43780 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
65ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
7 elmapi 8870 . . . . . . . . . . . . 13 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
86, 7syl 17 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
92, 3, 4ntrneibex 43777 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ V)
109ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
11 simplr 767 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
1211elpwid 4606 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠𝐵)
13 simpr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵)
1413elpwid 4606 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡𝐵)
1512, 14unssd 4184 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑠𝑡) ⊆ 𝐵)
1610, 15sselpwd 5325 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑠𝑡) ∈ 𝒫 𝐵)
178, 16ffvelcdmd 7091 . . . . . . . . . . 11 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝑠𝑡)) ∈ 𝒫 𝐵)
1817elpwid 4606 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝑠𝑡)) ⊆ 𝐵)
19 ralss 4053 . . . . . . . . . 10 ((𝐼‘(𝑠𝑡)) ⊆ 𝐵 → (∀𝑥 ∈ (𝐼‘(𝑠𝑡))𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))))
2018, 19syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ (𝐼‘(𝑠𝑡))𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))))
211, 20bitrid 282 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))))
22 dfss3 3967 . . . . . . . . 9 (((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡)) ↔ ∀𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))𝑥 ∈ (𝐼‘(𝑠𝑡)))
238, 11ffvelcdmd 7091 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
2423elpwid 4606 . . . . . . . . . . 11 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
258, 13ffvelcdmd 7091 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑡) ∈ 𝒫 𝐵)
2625elpwid 4606 . . . . . . . . . . 11 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑡) ⊆ 𝐵)
2724, 26unssd 4184 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ 𝐵)
28 ralss 4053 . . . . . . . . . 10 (((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ 𝐵 → (∀𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡)))))
2927, 28syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡)))))
3022, 29bitrid 282 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡)))))
3121, 30anbi12d 630 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ∧ ((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))) ↔ (∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))) ∧ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡))))))
32 eqss 3994 . . . . . . 7 ((𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ∧ ((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))))
33 ralbiim 3103 . . . . . . 7 (∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))) ↔ (∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))) ∧ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡)))))
3431, 32, 333bitr4g 313 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))))
354ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
36 simpr 483 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
379ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐵 ∈ V)
38 simpllr 774 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
3938elpwid 4606 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠𝐵)
40 simplr 767 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑡 ∈ 𝒫 𝐵)
4140elpwid 4606 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑡𝐵)
4239, 41unssd 4184 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑠𝑡) ⊆ 𝐵)
4337, 42sselpwd 5325 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑠𝑡) ∈ 𝒫 𝐵)
442, 3, 35, 36, 43ntrneiel 43785 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ (𝑠𝑡) ∈ (𝑁𝑥)))
45 elun 4145 . . . . . . . . 9 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)))
462, 3, 35, 36, 38ntrneiel 43785 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
472, 3, 35, 36, 40ntrneiel 43785 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑡) ↔ 𝑡 ∈ (𝑁𝑥)))
4846, 47orbi12d 916 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
4945, 48bitrid 282 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
5044, 49bibi12d 344 . . . . . . 7 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))) ↔ ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
5150ralbidva 3166 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))) ↔ ∀𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
5234, 51bitrd 278 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
5352ralbidva 3166 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
54 ralcom 3277 . . . 4 (∀𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))) ↔ ∀𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
5553, 54bitrdi 286 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
5655ralbidva 3166 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
57 ralcom 3277 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
5856, 57bitrdi 286 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wcel 2099  wral 3051  {crab 3419  Vcvv 3462  cun 3944  wss 3946  𝒫 cpw 4597   class class class wbr 5145  cmpt 5228  wf 6542  cfv 6546  (class class class)co 7416  cmpo 7418  m cmap 8847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-map 8849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator