MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclo2 Structured version   Visualization version   GIF version

Theorem isclo2 22439
Description: A set 𝐴 is clopen iff for every point 𝑥 in the space there is a neighborhood 𝑦 of 𝑥 which is either disjoint from 𝐴 or contained in 𝐴. (Contributed by Mario Carneiro, 7-Jul-2015.)
Hypothesis
Ref Expression
isclo.1 𝑋 = 𝐽
Assertion
Ref Expression
isclo2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑧𝐴𝑦𝐴))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐽,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧

Proof of Theorem isclo2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 isclo.1 . . 3 𝑋 = 𝐽
21isclo 22438 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
3 eleq1w 2820 . . . . . . . . . . 11 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
43bibi2d 342 . . . . . . . . . 10 (𝑧 = 𝑤 → ((𝑥𝐴𝑧𝐴) ↔ (𝑥𝐴𝑤𝐴)))
54cbvralvw 3225 . . . . . . . . 9 (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ↔ ∀𝑤𝑦 (𝑥𝐴𝑤𝐴))
65anbi2i 623 . . . . . . . 8 ((∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ∧ ∀𝑤𝑦 (𝑥𝐴𝑤𝐴)))
7 pm4.24 564 . . . . . . . 8 (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ↔ (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
8 raaanv 4479 . . . . . . . 8 (∀𝑧𝑦𝑤𝑦 ((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)) ↔ (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ∧ ∀𝑤𝑦 (𝑥𝐴𝑤𝐴)))
96, 7, 83bitr4i 302 . . . . . . 7 (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ↔ ∀𝑧𝑦𝑤𝑦 ((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)))
10 bibi1 351 . . . . . . . . . . . . 13 ((𝑥𝐴𝑧𝐴) → ((𝑥𝐴𝑤𝐴) ↔ (𝑧𝐴𝑤𝐴)))
1110biimpa 477 . . . . . . . . . . . 12 (((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)) → (𝑧𝐴𝑤𝐴))
1211biimpcd 248 . . . . . . . . . . 11 (𝑧𝐴 → (((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)) → 𝑤𝐴))
1312ralimdv 3166 . . . . . . . . . 10 (𝑧𝐴 → (∀𝑤𝑦 ((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)) → ∀𝑤𝑦 𝑤𝐴))
1413com12 32 . . . . . . . . 9 (∀𝑤𝑦 ((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)) → (𝑧𝐴 → ∀𝑤𝑦 𝑤𝐴))
15 dfss3 3932 . . . . . . . . 9 (𝑦𝐴 ↔ ∀𝑤𝑦 𝑤𝐴)
1614, 15syl6ibr 251 . . . . . . . 8 (∀𝑤𝑦 ((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)) → (𝑧𝐴𝑦𝐴))
1716ralimi 3086 . . . . . . 7 (∀𝑧𝑦𝑤𝑦 ((𝑥𝐴𝑧𝐴) ∧ (𝑥𝐴𝑤𝐴)) → ∀𝑧𝑦 (𝑧𝐴𝑦𝐴))
189, 17sylbi 216 . . . . . 6 (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) → ∀𝑧𝑦 (𝑧𝐴𝑦𝐴))
19 eleq1w 2820 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
2019imbi1d 341 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑧𝐴𝑦𝐴) ↔ (𝑥𝐴𝑦𝐴)))
2120rspcv 3577 . . . . . . . . 9 (𝑥𝑦 → (∀𝑧𝑦 (𝑧𝐴𝑦𝐴) → (𝑥𝐴𝑦𝐴)))
22 dfss3 3932 . . . . . . . . . . 11 (𝑦𝐴 ↔ ∀𝑧𝑦 𝑧𝐴)
2322imbi2i 335 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) ↔ (𝑥𝐴 → ∀𝑧𝑦 𝑧𝐴))
24 r19.21v 3176 . . . . . . . . . 10 (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ↔ (𝑥𝐴 → ∀𝑧𝑦 𝑧𝐴))
2523, 24bitr4i 277 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴) ↔ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))
2621, 25syl6ib 250 . . . . . . . 8 (𝑥𝑦 → (∀𝑧𝑦 (𝑧𝐴𝑦𝐴) → ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
27 ssel 3937 . . . . . . . . . . 11 (𝑦𝐴 → (𝑥𝑦𝑥𝐴))
2827com12 32 . . . . . . . . . 10 (𝑥𝑦 → (𝑦𝐴𝑥𝐴))
2928imim2d 57 . . . . . . . . 9 (𝑥𝑦 → ((𝑧𝐴𝑦𝐴) → (𝑧𝐴𝑥𝐴)))
3029ralimdv 3166 . . . . . . . 8 (𝑥𝑦 → (∀𝑧𝑦 (𝑧𝐴𝑦𝐴) → ∀𝑧𝑦 (𝑧𝐴𝑥𝐴)))
3126, 30jcad 513 . . . . . . 7 (𝑥𝑦 → (∀𝑧𝑦 (𝑧𝐴𝑦𝐴) → (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ∧ ∀𝑧𝑦 (𝑧𝐴𝑥𝐴))))
32 ralbiim 3116 . . . . . . 7 (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ↔ (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ∧ ∀𝑧𝑦 (𝑧𝐴𝑥𝐴)))
3331, 32syl6ibr 251 . . . . . 6 (𝑥𝑦 → (∀𝑧𝑦 (𝑧𝐴𝑦𝐴) → ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)))
3418, 33impbid2 225 . . . . 5 (𝑥𝑦 → (∀𝑧𝑦 (𝑥𝐴𝑧𝐴) ↔ ∀𝑧𝑦 (𝑧𝐴𝑦𝐴)))
3534pm5.32i 575 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑧𝐴𝑦𝐴)))
3635rexbii 3097 . . 3 (∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑧𝐴𝑦𝐴)))
3736ralbii 3096 . 2 (∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑧𝐴𝑦𝐴)))
382, 37bitrdi 286 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑧𝐴𝑦𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  cin 3909  wss 3910   cuni 4865  cfv 6496  Topctop 22242  Clsdccld 22367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-iota 6448  df-fun 6498  df-fv 6504  df-topgen 17325  df-top 22243  df-cld 22370
This theorem is referenced by:  connpconn  33829
  Copyright terms: Public domain W3C validator