MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqreu Structured version   Visualization version   GIF version

Theorem eqreu 3664
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
eqreu.1 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
eqreu ((𝐵𝐴𝜓 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)) → ∃!𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eqreu
StepHypRef Expression
1 ralbiim 3099 . . . . 5 (∀𝑥𝐴 (𝜑𝑥 = 𝐵) ↔ (∀𝑥𝐴 (𝜑𝑥 = 𝐵) ∧ ∀𝑥𝐴 (𝑥 = 𝐵𝜑)))
2 eqreu.1 . . . . . . 7 (𝑥 = 𝐵 → (𝜑𝜓))
32ceqsralv 3469 . . . . . 6 (𝐵𝐴 → (∀𝑥𝐴 (𝑥 = 𝐵𝜑) ↔ 𝜓))
43anbi2d 629 . . . . 5 (𝐵𝐴 → ((∀𝑥𝐴 (𝜑𝑥 = 𝐵) ∧ ∀𝑥𝐴 (𝑥 = 𝐵𝜑)) ↔ (∀𝑥𝐴 (𝜑𝑥 = 𝐵) ∧ 𝜓)))
51, 4bitrid 282 . . . 4 (𝐵𝐴 → (∀𝑥𝐴 (𝜑𝑥 = 𝐵) ↔ (∀𝑥𝐴 (𝜑𝑥 = 𝐵) ∧ 𝜓)))
6 reu6i 3663 . . . . 5 ((𝐵𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)) → ∃!𝑥𝐴 𝜑)
76ex 413 . . . 4 (𝐵𝐴 → (∀𝑥𝐴 (𝜑𝑥 = 𝐵) → ∃!𝑥𝐴 𝜑))
85, 7sylbird 259 . . 3 (𝐵𝐴 → ((∀𝑥𝐴 (𝜑𝑥 = 𝐵) ∧ 𝜓) → ∃!𝑥𝐴 𝜑))
983impib 1115 . 2 ((𝐵𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵) ∧ 𝜓) → ∃!𝑥𝐴 𝜑)
1093com23 1125 1 ((𝐵𝐴𝜓 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)) → ∃!𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  ∃!wreu 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-reu 3072
This theorem is referenced by:  uzwo3  12683  frmdup3  18506  frgpup3  19384  neiptopreu  22284  ufileu  23070  mirreu  27025  lmireu  27151  opreu2reuALT  30825  symgfcoeu  31351
  Copyright terms: Public domain W3C validator