Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqreu | Structured version Visualization version GIF version |
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
eqreu.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
eqreu | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiim 3098 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 → 𝜑))) | |
2 | eqreu.1 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ceqsralv 3459 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 → 𝜑) ↔ 𝜓)) |
4 | 3 | anbi2d 628 | . . . . 5 ⊢ (𝐵 ∈ 𝐴 → ((∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 → 𝜑)) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓))) |
5 | 1, 4 | syl5bb 282 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓))) |
6 | reu6i 3658 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) | |
7 | 6 | ex 412 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵) → ∃!𝑥 ∈ 𝐴 𝜑)) |
8 | 5, 7 | sylbird 259 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ((∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓) → ∃!𝑥 ∈ 𝐴 𝜑)) |
9 | 8 | 3impib 1114 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵) ∧ 𝜓) → ∃!𝑥 ∈ 𝐴 𝜑) |
10 | 9 | 3com23 1124 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃!wreu 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-reu 3070 |
This theorem is referenced by: uzwo3 12612 frmdup3 18421 frgpup3 19299 neiptopreu 22192 ufileu 22978 mirreu 26929 lmireu 27055 opreu2reuALT 30726 symgfcoeu 31253 |
Copyright terms: Public domain | W3C validator |