![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlateq | Structured version Visualization version GIF version |
Description: The equality of two Hilbert lattice elements is determined by the atoms under them. (chrelat4i 31613 analog.) (Contributed by NM, 24-May-2012.) |
Ref | Expression |
---|---|
hlatle.b | β’ π΅ = (BaseβπΎ) |
hlatle.l | β’ β€ = (leβπΎ) |
hlatle.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
hlateq | β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (βπ β π΄ (π β€ π β π β€ π) β π = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiim 3113 | . . 3 β’ (βπ β π΄ (π β€ π β π β€ π) β (βπ β π΄ (π β€ π β π β€ π) β§ βπ β π΄ (π β€ π β π β€ π))) | |
2 | hlatle.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
3 | hlatle.l | . . . . 5 β’ β€ = (leβπΎ) | |
4 | hlatle.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
5 | 2, 3, 4 | hlatle 38257 | . . . 4 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (π β€ π β βπ β π΄ (π β€ π β π β€ π))) |
6 | 2, 3, 4 | hlatle 38257 | . . . . 5 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (π β€ π β βπ β π΄ (π β€ π β π β€ π))) |
7 | 6 | 3com23 1126 | . . . 4 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (π β€ π β βπ β π΄ (π β€ π β π β€ π))) |
8 | 5, 7 | anbi12d 631 | . . 3 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β ((π β€ π β§ π β€ π) β (βπ β π΄ (π β€ π β π β€ π) β§ βπ β π΄ (π β€ π β π β€ π)))) |
9 | 1, 8 | bitr4id 289 | . 2 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (βπ β π΄ (π β€ π β π β€ π) β (π β€ π β§ π β€ π))) |
10 | hllat 38221 | . . 3 β’ (πΎ β HL β πΎ β Lat) | |
11 | 2, 3 | latasymb 18391 | . . 3 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β ((π β€ π β§ π β€ π) β π = π)) |
12 | 10, 11 | syl3an1 1163 | . 2 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β ((π β€ π β§ π β€ π) β π = π)) |
13 | 9, 12 | bitrd 278 | 1 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (βπ β π΄ (π β€ π β π β€ π) β π = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 class class class wbr 5147 βcfv 6540 Basecbs 17140 lecple 17200 Latclat 18380 Atomscatm 38121 HLchlt 38208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 |
This theorem is referenced by: lauteq 38954 ltrneq2 39007 |
Copyright terms: Public domain | W3C validator |