Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlateq Structured version   Visualization version   GIF version

Theorem hlateq 37069
Description: The equality of two Hilbert lattice elements is determined by the atoms under them. (chrelat4i 30321 analog.) (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
hlatle.b 𝐵 = (Base‘𝐾)
hlatle.l = (le‘𝐾)
hlatle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlateq ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ 𝑋 = 𝑌))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem hlateq
StepHypRef Expression
1 ralbiim 3089 . . 3 (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ∧ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
2 hlatle.b . . . . 5 𝐵 = (Base‘𝐾)
3 hlatle.l . . . . 5 = (le‘𝐾)
4 hlatle.a . . . . 5 𝐴 = (Atoms‘𝐾)
52, 3, 4hlatle 37068 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
62, 3, 4hlatle 37068 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
763com23 1127 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋 ↔ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
85, 7anbi12d 634 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ∧ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋))))
91, 8bitr4id 293 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ (𝑋 𝑌𝑌 𝑋)))
10 hllat 37033 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
112, 3latasymb 17793 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
1210, 11syl3an1 1164 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
139, 12bitrd 282 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3054   class class class wbr 5040  cfv 6350  Basecbs 16599  lecple 16688  Latclat 17784  Atomscatm 36933  HLchlt 37020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-proset 17667  df-poset 17685  df-plt 17697  df-lub 17713  df-glb 17714  df-join 17715  df-meet 17716  df-p0 17778  df-lat 17785  df-clat 17847  df-oposet 36846  df-ol 36848  df-oml 36849  df-covers 36936  df-ats 36937  df-atl 36968  df-cvlat 36992  df-hlat 37021
This theorem is referenced by:  lauteq  37765  ltrneq2  37818
  Copyright terms: Public domain W3C validator