Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > postcposALT | Structured version Visualization version GIF version |
Description: Alternate proof for postcpos 46322. (Contributed by Zhi Wang, 25-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
postc.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
postc.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
Ref | Expression |
---|---|
postcposALT | ⊢ (𝜑 → (𝐾 ∈ Poset ↔ 𝐶 ∈ Poset)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | postc.c | . . . 4 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
2 | postc.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
3 | eqidd 2741 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
4 | 1, 2, 3 | prstcbas 46309 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐶)) |
5 | eqidd 2741 | . . . . . . 7 ⊢ (𝜑 → (le‘𝐾) = (le‘𝐾)) | |
6 | 1, 2, 5 | prstcle 46312 | . . . . . 6 ⊢ (𝜑 → (𝑥(le‘𝐾)𝑦 ↔ 𝑥(le‘𝐶)𝑦)) |
7 | 1, 2, 5 | prstcle 46312 | . . . . . 6 ⊢ (𝜑 → (𝑦(le‘𝐾)𝑥 ↔ 𝑦(le‘𝐶)𝑥)) |
8 | 6, 7 | anbi12d 631 | . . . . 5 ⊢ (𝜑 → ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) ↔ (𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥))) |
9 | 8 | imbi1d 342 | . . . 4 ⊢ (𝜑 → (((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ↔ ((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
10 | 4, 9 | raleqbidvv 3337 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
11 | 4, 10 | raleqbidvv 3337 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
12 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
13 | eqid 2740 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
14 | 12, 13 | ispos2 18023 | . . . 4 ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦))) |
15 | 14 | baib 536 | . . 3 ⊢ (𝐾 ∈ Proset → (𝐾 ∈ Poset ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦))) |
16 | 2, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝐾 ∈ Poset ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦))) |
17 | 1, 2 | prstcprs 46317 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Proset ) |
18 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
19 | eqid 2740 | . . . . 5 ⊢ (le‘𝐶) = (le‘𝐶) | |
20 | 18, 19 | ispos2 18023 | . . . 4 ⊢ (𝐶 ∈ Poset ↔ (𝐶 ∈ Proset ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
21 | 20 | baib 536 | . . 3 ⊢ (𝐶 ∈ Proset → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
22 | 17, 21 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
23 | 11, 16, 22 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝐾 ∈ Poset ↔ 𝐶 ∈ Poset)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 class class class wbr 5079 ‘cfv 6431 Basecbs 16902 lecple 16959 Proset cproset 18001 Posetcpo 18015 ProsetToCatcprstc 46304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-5 12031 df-6 12032 df-7 12033 df-8 12034 df-9 12035 df-n0 12226 df-z 12312 df-dec 12429 df-sets 16855 df-slot 16873 df-ndx 16885 df-base 16903 df-ple 16972 df-hom 16976 df-cco 16977 df-proset 18003 df-poset 18021 df-prstc 46305 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |