Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  postcposALT Structured version   Visualization version   GIF version

Theorem postcposALT 46248
Description: Alternate proof for postcpos 46247. (Contributed by Zhi Wang, 25-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
postc.c (𝜑𝐶 = (ProsetToCat‘𝐾))
postc.k (𝜑𝐾 ∈ Proset )
Assertion
Ref Expression
postcposALT (𝜑 → (𝐾 ∈ Poset ↔ 𝐶 ∈ Poset))

Proof of Theorem postcposALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 postc.c . . . 4 (𝜑𝐶 = (ProsetToCat‘𝐾))
2 postc.k . . . 4 (𝜑𝐾 ∈ Proset )
3 eqidd 2739 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐾))
41, 2, 3prstcbas 46236 . . 3 (𝜑 → (Base‘𝐾) = (Base‘𝐶))
5 eqidd 2739 . . . . . . 7 (𝜑 → (le‘𝐾) = (le‘𝐾))
61, 2, 5prstcle 46238 . . . . . 6 (𝜑 → (𝑥(le‘𝐾)𝑦𝑥(le‘𝐶)𝑦))
71, 2, 5prstcle 46238 . . . . . 6 (𝜑 → (𝑦(le‘𝐾)𝑥𝑦(le‘𝐶)𝑥))
86, 7anbi12d 630 . . . . 5 (𝜑 → ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) ↔ (𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥)))
98imbi1d 341 . . . 4 (𝜑 → (((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ↔ ((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
104, 9raleqbidvv 3329 . . 3 (𝜑 → (∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
114, 10raleqbidvv 3329 . 2 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
12 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
13 eqid 2738 . . . . 5 (le‘𝐾) = (le‘𝐾)
1412, 13ispos2 17948 . . . 4 (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦)))
1514baib 535 . . 3 (𝐾 ∈ Proset → (𝐾 ∈ Poset ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦)))
162, 15syl 17 . 2 (𝜑 → (𝐾 ∈ Poset ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦)))
171, 2prstcprs 46242 . . 3 (𝜑𝐶 ∈ Proset )
18 eqid 2738 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
19 eqid 2738 . . . . 5 (le‘𝐶) = (le‘𝐶)
2018, 19ispos2 17948 . . . 4 (𝐶 ∈ Poset ↔ (𝐶 ∈ Proset ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
2120baib 535 . . 3 (𝐶 ∈ Proset → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
2217, 21syl 17 . 2 (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦)))
2311, 16, 223bitr4d 310 1 (𝜑 → (𝐾 ∈ Poset ↔ 𝐶 ∈ Poset))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895   Proset cproset 17926  Posetcpo 17940  ProsetToCatcprstc 46231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ple 16908  df-hom 16912  df-cco 16913  df-proset 17928  df-poset 17946  df-prstc 46232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator