![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > postcposALT | Structured version Visualization version GIF version |
Description: Alternate proof for postcpos 48737. (Contributed by Zhi Wang, 25-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
postc.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
postc.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
Ref | Expression |
---|---|
postcposALT | ⊢ (𝜑 → (𝐾 ∈ Poset ↔ 𝐶 ∈ Poset)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | postc.c | . . . 4 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
2 | postc.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
3 | eqidd 2741 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐾)) | |
4 | 1, 2, 3 | prstcbas 48724 | . . 3 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐶)) |
5 | eqidd 2741 | . . . . . . 7 ⊢ (𝜑 → (le‘𝐾) = (le‘𝐾)) | |
6 | 1, 2, 5 | prstcle 48727 | . . . . . 6 ⊢ (𝜑 → (𝑥(le‘𝐾)𝑦 ↔ 𝑥(le‘𝐶)𝑦)) |
7 | 1, 2, 5 | prstcle 48727 | . . . . . 6 ⊢ (𝜑 → (𝑦(le‘𝐾)𝑥 ↔ 𝑦(le‘𝐶)𝑥)) |
8 | 6, 7 | anbi12d 631 | . . . . 5 ⊢ (𝜑 → ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) ↔ (𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥))) |
9 | 8 | imbi1d 341 | . . . 4 ⊢ (𝜑 → (((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ↔ ((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
10 | 4, 9 | raleqbidvv 3342 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
11 | 4, 10 | raleqbidvv 3342 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
12 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
13 | eqid 2740 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
14 | 12, 13 | ispos2 18379 | . . . 4 ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦))) |
15 | 14 | baib 535 | . . 3 ⊢ (𝐾 ∈ Proset → (𝐾 ∈ Poset ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦))) |
16 | 2, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝐾 ∈ Poset ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦))) |
17 | 1, 2 | prstcprs 48732 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Proset ) |
18 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
19 | eqid 2740 | . . . . 5 ⊢ (le‘𝐶) = (le‘𝐶) | |
20 | 18, 19 | ispos2 18379 | . . . 4 ⊢ (𝐶 ∈ Poset ↔ (𝐶 ∈ Proset ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
21 | 20 | baib 535 | . . 3 ⊢ (𝐶 ∈ Proset → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
22 | 17, 21 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(le‘𝐶)𝑦 ∧ 𝑦(le‘𝐶)𝑥) → 𝑥 = 𝑦))) |
23 | 11, 16, 22 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝐾 ∈ Poset ↔ 𝐶 ∈ Poset)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ‘cfv 6568 Basecbs 17252 lecple 17312 Proset cproset 18357 Posetcpo 18371 ProsetToCatcprstc 48719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-er 8757 df-en 8998 df-dom 8999 df-sdom 9000 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-7 12355 df-8 12356 df-9 12357 df-n0 12548 df-z 12634 df-dec 12753 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-ple 17325 df-hom 17329 df-cco 17330 df-proset 18359 df-poset 18377 df-prstc 48720 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |