| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqbidva | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| Ref | Expression |
|---|---|
| raleqbidva.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| raleqbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidva.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidva 3154 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| 3 | raleqbidva.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | raleqdv 3299 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: raleqbidvv 3307 catpropd 17670 cidpropd 17671 funcpropd 17864 fullpropd 17884 natpropd 17941 gsumpropd2lem 18606 ringurd 20094 istrkgcb 28383 iscgrg 28439 isperp 28639 clwlkclwwlk 29931 urpropd 33183 domnpropd 33227 lindfpropd 33353 opprqus0g 33461 opprqusdrng 33464 ist0cld 33823 matunitlindflem1 37610 primrootsunit1 42085 sticksstones3 42136 uppropd 49170 lanup 49630 ranup 49631 |
| Copyright terms: Public domain | W3C validator |