MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqbidva Structured version   Visualization version   GIF version

Theorem raleqbidva 3305
Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypotheses
Ref Expression
raleqbidva.1 (𝜑𝐴 = 𝐵)
raleqbidva.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
raleqbidva (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem raleqbidva
StepHypRef Expression
1 raleqbidva.2 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21ralbidva 3154 . 2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))
3 raleqbidva.1 . . 3 (𝜑𝐴 = 𝐵)
43raleqdv 3299 . 2 (𝜑 → (∀𝑥𝐴 𝜒 ↔ ∀𝑥𝐵 𝜒))
52, 4bitrd 279 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ral 3045  df-rex 3054
This theorem is referenced by:  raleqbidvv  3307  catpropd  17670  cidpropd  17671  funcpropd  17864  fullpropd  17884  natpropd  17941  gsumpropd2lem  18606  ringurd  20094  istrkgcb  28383  iscgrg  28439  isperp  28639  clwlkclwwlk  29931  urpropd  33183  domnpropd  33227  lindfpropd  33353  opprqus0g  33461  opprqusdrng  33464  ist0cld  33823  matunitlindflem1  37610  primrootsunit1  42085  sticksstones3  42136  uppropd  49170  lanup  49630  ranup  49631
  Copyright terms: Public domain W3C validator