MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqbidva Structured version   Visualization version   GIF version

Theorem raleqbidva 3315
Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypotheses
Ref Expression
raleqbidva.1 (𝜑𝐴 = 𝐵)
raleqbidva.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
raleqbidva (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem raleqbidva
StepHypRef Expression
1 raleqbidva.2 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21ralbidva 3162 . 2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))
3 raleqbidva.1 . . 3 (𝜑𝐴 = 𝐵)
43raleqdv 3309 . 2 (𝜑 → (∀𝑥𝐴 𝜒 ↔ ∀𝑥𝐵 𝜒))
52, 4bitrd 279 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2728  df-ral 3053  df-rex 3062
This theorem is referenced by:  raleqbidvv  3317  catpropd  17726  cidpropd  17727  funcpropd  17920  fullpropd  17940  natpropd  17997  gsumpropd2lem  18662  ringurd  20150  istrkgcb  28440  iscgrg  28496  isperp  28696  clwlkclwwlk  29988  urpropd  33232  domnpropd  33276  lindfpropd  33402  opprqus0g  33510  opprqusdrng  33513  ist0cld  33869  matunitlindflem1  37645  primrootsunit1  42115  sticksstones3  42166  lanup  49482  ranup  49483
  Copyright terms: Public domain W3C validator