| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqbidva | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| Ref | Expression |
|---|---|
| raleqbidva.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| raleqbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidva.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidva 3153 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| 3 | raleqbidva.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | raleqdv 3292 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: raleqbidvv 3300 catpropd 17615 cidpropd 17616 funcpropd 17809 fullpropd 17829 natpropd 17886 gsumpropd2lem 18587 ringurd 20103 istrkgcb 28434 iscgrg 28490 isperp 28690 clwlkclwwlk 29982 urpropd 33199 domnpropd 33243 lindfpropd 33347 opprqus0g 33455 opprqusdrng 33458 ist0cld 33846 matunitlindflem1 37655 primrootsunit1 42189 sticksstones3 42240 uppropd 49281 lanup 49741 ranup 49742 |
| Copyright terms: Public domain | W3C validator |