MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralidm Structured version   Visualization version   GIF version

Theorem ralidm 4439
Description: Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.) Reduce axiom usage. (Revised by Gino Giotto, 2-Sep-2024.)
Assertion
Ref Expression
ralidm (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)

Proof of Theorem ralidm
StepHypRef Expression
1 df-ral 3068 . 2 (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑥𝐴 𝜑))
2 df-ral 3068 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
3 ax-1 6 . . . . 5 (∀𝑥(𝑥𝐴𝜑) → (𝑥𝐴 → ∀𝑥(𝑥𝐴𝜑)))
43axc4i 2320 . . . 4 (∀𝑥(𝑥𝐴𝜑) → ∀𝑥(𝑥𝐴 → ∀𝑥(𝑥𝐴𝜑)))
5 pm2.21 123 . . . . . 6 𝑥𝐴 → (𝑥𝐴𝜑))
6 sp 2178 . . . . . 6 (∀𝑥(𝑥𝐴𝜑) → (𝑥𝐴𝜑))
75, 6ja 186 . . . . 5 ((𝑥𝐴 → ∀𝑥(𝑥𝐴𝜑)) → (𝑥𝐴𝜑))
87alimi 1815 . . . 4 (∀𝑥(𝑥𝐴 → ∀𝑥(𝑥𝐴𝜑)) → ∀𝑥(𝑥𝐴𝜑))
94, 8impbii 208 . . 3 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐴 → ∀𝑥(𝑥𝐴𝜑)))
102bicomi 223 . . . . 5 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝐴 𝜑)
1110imbi2i 335 . . . 4 ((𝑥𝐴 → ∀𝑥(𝑥𝐴𝜑)) ↔ (𝑥𝐴 → ∀𝑥𝐴 𝜑))
1211albii 1823 . . 3 (∀𝑥(𝑥𝐴 → ∀𝑥(𝑥𝐴𝜑)) ↔ ∀𝑥(𝑥𝐴 → ∀𝑥𝐴 𝜑))
132, 9, 123bitrri 297 . 2 (∀𝑥(𝑥𝐴 → ∀𝑥𝐴 𝜑) ↔ ∀𝑥𝐴 𝜑)
141, 13bitri 274 1 (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2108  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1784  df-nf 1788  df-ral 3068
This theorem is referenced by:  cnvpo  6179
  Copyright terms: Public domain W3C validator