MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralidm Structured version   Visualization version   GIF version

Theorem ralidm 4234
Description: Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.)
Assertion
Ref Expression
ralidm (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralidm
StepHypRef Expression
1 rzal 4232 . . 3 (𝐴 = ∅ → ∀𝑥𝐴𝑥𝐴 𝜑)
2 rzal 4232 . . 3 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
31, 22thd 256 . 2 (𝐴 = ∅ → (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑))
4 neq0 4094 . . 3 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
5 biimt 351 . . . 4 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝜑 ↔ (∃𝑥 𝑥𝐴 → ∀𝑥𝐴 𝜑)))
6 df-ral 3060 . . . . 5 (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑥𝐴 𝜑))
7 nfra1 3088 . . . . . 6 𝑥𝑥𝐴 𝜑
8719.23 2244 . . . . 5 (∀𝑥(𝑥𝐴 → ∀𝑥𝐴 𝜑) ↔ (∃𝑥 𝑥𝐴 → ∀𝑥𝐴 𝜑))
96, 8bitri 266 . . . 4 (∀𝑥𝐴𝑥𝐴 𝜑 ↔ (∃𝑥 𝑥𝐴 → ∀𝑥𝐴 𝜑))
105, 9syl6rbbr 281 . . 3 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑))
114, 10sylbi 208 . 2 𝐴 = ∅ → (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑))
123, 11pm2.61i 176 1 (∀𝑥𝐴𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wal 1650   = wceq 1652  wex 1874  wcel 2155  wral 3055  c0 4079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-v 3352  df-dif 3735  df-nul 4080
This theorem is referenced by:  idrefOLD  5692  cnvpo  5859  dfwe2  7179
  Copyright terms: Public domain W3C validator