Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvpo Structured version   Visualization version   GIF version

Theorem cnvpo 6113
 Description: The converse of a partial order relation is a partial order relation. (Contributed by NM, 15-Jun-2005.)
Assertion
Ref Expression
cnvpo (𝑅 Po 𝐴𝑅 Po 𝐴)

Proof of Theorem cnvpo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 3137 . . . . . . 7 (∀𝑧𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ (∀𝑧𝐴 ¬ 𝑧𝑅𝑧 ∧ ∀𝑧𝐴 ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
2 vex 3445 . . . . . . . . . . . 12 𝑧 ∈ V
32, 2brcnv 5721 . . . . . . . . . . 11 (𝑧𝑅𝑧𝑧𝑅𝑧)
4 id 22 . . . . . . . . . . . 12 (𝑧 = 𝑥𝑧 = 𝑥)
54, 4breq12d 5047 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑧𝑅𝑧𝑥𝑅𝑥))
63, 5syl5bb 286 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧𝑅𝑧𝑥𝑅𝑥))
76notbid 321 . . . . . . . . 9 (𝑧 = 𝑥 → (¬ 𝑧𝑅𝑧 ↔ ¬ 𝑥𝑅𝑥))
87cbvralvw 3397 . . . . . . . 8 (∀𝑧𝐴 ¬ 𝑧𝑅𝑧 ↔ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥)
9 vex 3445 . . . . . . . . . . . 12 𝑦 ∈ V
102, 9brcnv 5721 . . . . . . . . . . 11 (𝑧𝑅𝑦𝑦𝑅𝑧)
11 vex 3445 . . . . . . . . . . . 12 𝑥 ∈ V
129, 11brcnv 5721 . . . . . . . . . . 11 (𝑦𝑅𝑥𝑥𝑅𝑦)
1310, 12anbi12ci 630 . . . . . . . . . 10 ((𝑧𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧))
142, 11brcnv 5721 . . . . . . . . . 10 (𝑧𝑅𝑥𝑥𝑅𝑧)
1513, 14imbi12i 354 . . . . . . . . 9 (((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1615ralbii 3133 . . . . . . . 8 (∀𝑧𝐴 ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥) ↔ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
178, 16anbi12i 629 . . . . . . 7 ((∀𝑧𝐴 ¬ 𝑧𝑅𝑧 ∧ ∀𝑧𝐴 ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
181, 17bitr2i 279 . . . . . 6 ((∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
1918ralbii 3133 . . . . 5 (∀𝑥𝐴 (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝐴𝑧𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
20 r19.26 3137 . . . . . . 7 (∀𝑥𝐴 (∀𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
21 ralidm 4416 . . . . . . . . 9 (∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥)
22 rzal 4414 . . . . . . . . . . 11 (𝐴 = ∅ → ∀𝑥𝐴 ¬ 𝑥𝑅𝑥)
23 rzal 4414 . . . . . . . . . . 11 (𝐴 = ∅ → ∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥)
2422, 232thd 268 . . . . . . . . . 10 (𝐴 = ∅ → (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥))
25 r19.3rzv 4405 . . . . . . . . . . 11 (𝐴 ≠ ∅ → (¬ 𝑥𝑅𝑥 ↔ ∀𝑧𝐴 ¬ 𝑥𝑅𝑥))
2625ralbidv 3162 . . . . . . . . . 10 (𝐴 ≠ ∅ → (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥))
2724, 26pm2.61ine 3070 . . . . . . . . 9 (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥)
2821, 27bitr2i 279 . . . . . . . 8 (∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥)
2928anbi1i 626 . . . . . . 7 ((∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
3020, 29bitri 278 . . . . . 6 (∀𝑥𝐴 (∀𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
31 r19.26 3137 . . . . . . 7 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
3231ralbii 3133 . . . . . 6 (∀𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝐴 (∀𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
33 r19.26 3137 . . . . . 6 (∀𝑥𝐴 (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
3430, 32, 333bitr4i 306 . . . . 5 (∀𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝐴 (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
35 ralcom 3308 . . . . 5 (∀𝑧𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ∀𝑥𝐴𝑧𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
3619, 34, 353bitr4i 306 . . . 4 (∀𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
3736ralbii 3133 . . 3 (∀𝑦𝐴𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦𝐴𝑧𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
38 ralcom 3308 . . 3 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦𝐴𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
39 ralcom 3308 . . 3 (∀𝑧𝐴𝑦𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ∀𝑦𝐴𝑧𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
4037, 38, 393bitr4i 306 . 2 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧𝐴𝑦𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
41 df-po 5442 . 2 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
42 df-po 5442 . 2 (𝑅 Po 𝐴 ↔ ∀𝑧𝐴𝑦𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
4340, 41, 423bitr4i 306 1 (𝑅 Po 𝐴𝑅 Po 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ≠ wne 2987  ∀wral 3106  ∅c0 4246   class class class wbr 5034   Po wpo 5440  ◡ccnv 5522 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-v 3444  df-dif 3886  df-un 3888  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-br 5035  df-opab 5097  df-po 5442  df-cnv 5531 This theorem is referenced by:  cnvso  6114  fimax2g  8766  fin23lem40  9780  isfin1-3  9815
 Copyright terms: Public domain W3C validator