MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvpo Structured version   Visualization version   GIF version

Theorem cnvpo 6286
Description: The converse of a partial order is a partial order. (Contributed by NM, 15-Jun-2005.)
Assertion
Ref Expression
cnvpo (𝑅 Po 𝐴𝑅 Po 𝐴)

Proof of Theorem cnvpo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 3111 . . . . . . 7 (∀𝑧𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ (∀𝑧𝐴 ¬ 𝑧𝑅𝑧 ∧ ∀𝑧𝐴 ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
2 vex 3478 . . . . . . . . . . . 12 𝑧 ∈ V
32, 2brcnv 5882 . . . . . . . . . . 11 (𝑧𝑅𝑧𝑧𝑅𝑧)
4 id 22 . . . . . . . . . . . 12 (𝑧 = 𝑥𝑧 = 𝑥)
54, 4breq12d 5161 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑧𝑅𝑧𝑥𝑅𝑥))
63, 5bitrid 282 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧𝑅𝑧𝑥𝑅𝑥))
76notbid 317 . . . . . . . . 9 (𝑧 = 𝑥 → (¬ 𝑧𝑅𝑧 ↔ ¬ 𝑥𝑅𝑥))
87cbvralvw 3234 . . . . . . . 8 (∀𝑧𝐴 ¬ 𝑧𝑅𝑧 ↔ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥)
9 vex 3478 . . . . . . . . . . . 12 𝑦 ∈ V
102, 9brcnv 5882 . . . . . . . . . . 11 (𝑧𝑅𝑦𝑦𝑅𝑧)
11 vex 3478 . . . . . . . . . . . 12 𝑥 ∈ V
129, 11brcnv 5882 . . . . . . . . . . 11 (𝑦𝑅𝑥𝑥𝑅𝑦)
1310, 12anbi12ci 628 . . . . . . . . . 10 ((𝑧𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧))
142, 11brcnv 5882 . . . . . . . . . 10 (𝑧𝑅𝑥𝑥𝑅𝑧)
1513, 14imbi12i 350 . . . . . . . . 9 (((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1615ralbii 3093 . . . . . . . 8 (∀𝑧𝐴 ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥) ↔ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
178, 16anbi12i 627 . . . . . . 7 ((∀𝑧𝐴 ¬ 𝑧𝑅𝑧 ∧ ∀𝑧𝐴 ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
181, 17bitr2i 275 . . . . . 6 ((∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
1918ralbii 3093 . . . . 5 (∀𝑥𝐴 (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝐴𝑧𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
20 r19.26 3111 . . . . . . 7 (∀𝑥𝐴 (∀𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
21 ralidm 4511 . . . . . . . . 9 (∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥)
22 rzal 4508 . . . . . . . . . . 11 (𝐴 = ∅ → ∀𝑥𝐴 ¬ 𝑥𝑅𝑥)
23 rzal 4508 . . . . . . . . . . 11 (𝐴 = ∅ → ∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥)
2422, 232thd 264 . . . . . . . . . 10 (𝐴 = ∅ → (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥))
25 r19.3rzv 4498 . . . . . . . . . . 11 (𝐴 ≠ ∅ → (¬ 𝑥𝑅𝑥 ↔ ∀𝑧𝐴 ¬ 𝑥𝑅𝑥))
2625ralbidv 3177 . . . . . . . . . 10 (𝐴 ≠ ∅ → (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥))
2724, 26pm2.61ine 3025 . . . . . . . . 9 (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥)
2821, 27bitr2i 275 . . . . . . . 8 (∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥)
2928anbi1i 624 . . . . . . 7 ((∀𝑥𝐴𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
3020, 29bitri 274 . . . . . 6 (∀𝑥𝐴 (∀𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
31 r19.26 3111 . . . . . . 7 (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
3231ralbii 3093 . . . . . 6 (∀𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝐴 (∀𝑧𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
33 r19.26 3111 . . . . . 6 (∀𝑥𝐴 (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥𝐴𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
3430, 32, 333bitr4i 302 . . . . 5 (∀𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝐴 (∀𝑥𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
35 ralcom 3286 . . . . 5 (∀𝑧𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ∀𝑥𝐴𝑧𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
3619, 34, 353bitr4i 302 . . . 4 (∀𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
3736ralbii 3093 . . 3 (∀𝑦𝐴𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦𝐴𝑧𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
38 ralcom 3286 . . 3 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦𝐴𝑥𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
39 ralcom 3286 . . 3 (∀𝑧𝐴𝑦𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ∀𝑦𝐴𝑧𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
4037, 38, 393bitr4i 302 . 2 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧𝐴𝑦𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
41 df-po 5588 . 2 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
42 df-po 5588 . 2 (𝑅 Po 𝐴 ↔ ∀𝑧𝐴𝑦𝐴𝑥𝐴𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
4340, 41, 423bitr4i 302 1 (𝑅 Po 𝐴𝑅 Po 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wne 2940  wral 3061  c0 4322   class class class wbr 5148   Po wpo 5586  ccnv 5675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-po 5588  df-cnv 5684
This theorem is referenced by:  cnvso  6287  fimax2g  9288  fin23lem40  10345  isfin1-3  10380
  Copyright terms: Public domain W3C validator