Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relopabiv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2155 and ax-12 2172, see relopabi 5734. (Contributed by BJ, 22-Jul-2023.) |
Ref | Expression |
---|---|
relopabiv.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
relopabiv | ⊢ Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3437 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 3437 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | pm3.2i 471 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
5 | 4 | ssopab2i 5464 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
7 | df-xp 5596 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
8 | 5, 6, 7 | 3sstr4i 3965 | . 2 ⊢ 𝐴 ⊆ (V × V) |
9 | df-rel 5597 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
10 | 8, 9 | mpbir 230 | 1 ⊢ Rel 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2107 Vcvv 3433 ⊆ wss 3888 {copab 5137 × cxp 5588 Rel wrel 5595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 df-opab 5138 df-xp 5596 df-rel 5597 |
This theorem is referenced by: relopabv 5733 mptrel 5737 reli 5738 rele 5739 relcnv 6015 relco 6019 brfvopabrbr 6881 reloprab 7343 reldmoprab 7389 relrpss 7586 eqer 8542 ecopover 8619 relen 8747 reldom 8748 relfsupp 9139 relwdom 9334 fpwwe2lem2 10397 fpwwe2lem3 10398 fpwwe2lem5 10400 fpwwe2lem6 10401 fpwwe2lem8 10403 fpwwe2lem10 10405 fpwwe2lem11 10406 fpwwe2lem12 10407 fpwwelem 10410 climrel 15210 rlimrel 15211 brstruct 16858 sscrel 17534 gaorber 18923 sylow2a 19233 efgrelexlemb 19365 efgcpbllemb 19370 rellindf 21024 psrbaglesupp 21136 2ndcctbss 22615 refrel 22668 vitalilem1 24781 lgsquadlem1 26537 lgsquadlem2 26538 relsubgr 27645 vcrel 28931 h2hlm 29351 hlimi 29559 relfldext 31730 relmntop 31983 relae 32217 dmscut 34014 fnerel 34536 filnetlem3 34578 brabg2 35883 heiborlem3 35980 heiborlem4 35981 relrngo 36063 isdivrngo 36117 drngoi 36118 isdrngo1 36123 riscer 36155 relcoss 36553 relssr 36625 prter1 36900 prter3 36903 prjsper 40454 reldvds 41940 nelbrim 44778 isomgrrel 45285 rellininds 45795 |
Copyright terms: Public domain | W3C validator |