Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relopabiv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2153 and ax-12 2170, see relopabi 5749. (Contributed by BJ, 22-Jul-2023.) |
Ref | Expression |
---|---|
relopabiv.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
relopabiv | ⊢ Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3445 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 3445 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | pm3.2i 471 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
5 | 4 | ssopab2i 5481 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
7 | df-xp 5611 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
8 | 5, 6, 7 | 3sstr4i 3973 | . 2 ⊢ 𝐴 ⊆ (V × V) |
9 | df-rel 5612 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
10 | 8, 9 | mpbir 230 | 1 ⊢ Rel 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3896 {copab 5147 × cxp 5603 Rel wrel 5610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-in 3903 df-ss 3913 df-opab 5148 df-xp 5611 df-rel 5612 |
This theorem is referenced by: relopabv 5748 mptrel 5752 reli 5753 rele 5754 relcnv 6027 relco 6031 brfvopabrbr 6909 reloprab 7372 reldmoprab 7418 relrpss 7615 eqer 8579 ecopover 8656 relen 8784 reldom 8785 relfsupp 9198 relwdom 9393 fpwwe2lem2 10458 fpwwe2lem3 10459 fpwwe2lem5 10461 fpwwe2lem6 10462 fpwwe2lem8 10464 fpwwe2lem10 10466 fpwwe2lem11 10467 fpwwe2lem12 10468 fpwwelem 10471 climrel 15270 rlimrel 15271 brstruct 16916 sscrel 17592 gaorber 18981 sylow2a 19291 efgrelexlemb 19423 efgcpbllemb 19428 rellindf 21086 psrbaglesupp 21198 2ndcctbss 22677 refrel 22730 vitalilem1 24843 lgsquadlem1 26599 lgsquadlem2 26600 relsubgr 27744 vcrel 29030 h2hlm 29450 hlimi 29658 relfldext 31827 relmntop 32080 relae 32314 dmscut 34066 fnerel 34588 filnetlem3 34630 brabg2 35934 heiborlem3 36031 heiborlem4 36032 relrngo 36114 isdivrngo 36168 drngoi 36169 isdrngo1 36174 riscer 36206 relcoss 36649 relssr 36726 prter1 37105 prter3 37108 prjsper 40657 reldvds 42161 nelbrim 45026 isomgrrel 45533 rellininds 46043 |
Copyright terms: Public domain | W3C validator |