| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relopabiv | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2158 and ax-12 2178, see relopabi 5765. (Contributed by BJ, 22-Jul-2023.) |
| Ref | Expression |
|---|---|
| relopabiv.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| relopabiv | ⊢ Rel 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
| 5 | 4 | ssopab2i 5493 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
| 6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 7 | df-xp 5625 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
| 8 | 5, 6, 7 | 3sstr4i 3987 | . 2 ⊢ 𝐴 ⊆ (V × V) |
| 9 | df-rel 5626 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ Rel 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 {copab 5154 × cxp 5617 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-opab 5155 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: relopabv 5764 mptrel 5768 reli 5769 rele 5770 relcnv 6055 relco 6059 brfvopabrbr 6927 reloprab 7408 reldmoprab 7456 relrpss 7660 eqer 8661 ecopover 8748 relen 8877 reldom 8878 relfsupp 9253 relwdom 9458 fpwwe2lem2 10526 fpwwe2lem3 10527 fpwwe2lem5 10529 fpwwe2lem6 10530 fpwwe2lem8 10532 fpwwe2lem10 10534 fpwwe2lem11 10535 fpwwe2lem12 10536 fpwwelem 10539 climrel 15399 rlimrel 15400 brstruct 17059 sscrel 17720 gaorber 19187 sylow2a 19498 efgrelexlemb 19629 efgcpbllemb 19634 rellindf 21715 psrbaglesupp 21829 2ndcctbss 23340 refrel 23393 vitalilem1 25507 lgsquadlem1 27289 lgsquadlem2 27290 dmscut 27722 relsubgr 29214 vcrel 30504 h2hlm 30924 hlimi 31132 erler 33206 relfldext 33617 finextfldext 33637 relmntop 33997 relae 34213 fineqvnttrclse 35083 fnerel 36322 filnetlem3 36364 brabg2 37707 heiborlem3 37803 heiborlem4 37804 relrngo 37886 isdivrngo 37940 drngoi 37941 isdrngo1 37946 riscer 37978 relcoss 38410 relssr 38487 prter1 38868 prter3 38871 prjsper 42591 reldvds 44298 nelbrim 47269 rellininds 48438 |
| Copyright terms: Public domain | W3C validator |