Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relopabiv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2156 and ax-12 2173, see relopabi 5721. (Contributed by BJ, 22-Jul-2023.) |
Ref | Expression |
---|---|
relopabiv.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
relopabiv | ⊢ Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 3426 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
5 | 4 | ssopab2i 5456 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
7 | df-xp 5586 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
8 | 5, 6, 7 | 3sstr4i 3960 | . 2 ⊢ 𝐴 ⊆ (V × V) |
9 | df-rel 5587 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
10 | 8, 9 | mpbir 230 | 1 ⊢ Rel 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {copab 5132 × cxp 5578 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: relopabv 5720 mptrel 5724 reli 5725 rele 5726 relcnv 6001 cotrg 6005 relco 6137 brfvopabrbr 6854 reloprab 7312 reldmoprab 7358 relrpss 7555 eqer 8491 ecopover 8568 relen 8696 reldom 8697 relfsupp 9060 relwdom 9255 fpwwe2lem2 10319 fpwwe2lem3 10320 fpwwe2lem5 10322 fpwwe2lem6 10323 fpwwe2lem8 10325 fpwwe2lem10 10327 fpwwe2lem11 10328 fpwwe2lem12 10329 fpwwelem 10332 climrel 15129 rlimrel 15130 brstruct 16777 sscrel 17442 gaorber 18829 sylow2a 19139 efgrelexlemb 19271 efgcpbllemb 19276 rellindf 20925 psrbaglesupp 21037 2ndcctbss 22514 refrel 22567 vitalilem1 24677 lgsquadlem1 26433 lgsquadlem2 26434 relsubgr 27539 vcrel 28823 h2hlm 29243 hlimi 29451 relfldext 31623 relmntop 31874 relae 32108 dmscut 33932 fnerel 34454 filnetlem3 34496 brabg2 35801 heiborlem3 35898 heiborlem4 35899 relrngo 35981 isdivrngo 36035 drngoi 36036 isdrngo1 36041 riscer 36073 relcoss 36473 relssr 36545 prter1 36820 prter3 36823 prjsper 40368 reldvds 41822 nelbrim 44654 isomgrrel 45162 rellininds 45672 |
Copyright terms: Public domain | W3C validator |