| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relopabiv | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2160 and ax-12 2180, see relopabi 5761. (Contributed by BJ, 22-Jul-2023.) |
| Ref | Expression |
|---|---|
| relopabiv.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| relopabiv | ⊢ Rel 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
| 5 | 4 | ssopab2i 5488 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
| 6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 7 | df-xp 5620 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
| 8 | 5, 6, 7 | 3sstr4i 3981 | . 2 ⊢ 𝐴 ⊆ (V × V) |
| 9 | df-rel 5621 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ Rel 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 {copab 5151 × cxp 5612 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-opab 5152 df-xp 5620 df-rel 5621 |
| This theorem is referenced by: relopabv 5760 mptrel 5764 reli 5765 rele 5766 relcnv 6052 relco 6056 brfvopabrbr 6926 reloprab 7405 reldmoprab 7453 relrpss 7657 eqer 8658 ecopover 8745 relen 8874 reldom 8875 relfsupp 9247 relwdom 9452 fpwwe2lem2 10523 fpwwe2lem3 10524 fpwwe2lem5 10526 fpwwe2lem6 10527 fpwwe2lem8 10529 fpwwe2lem10 10531 fpwwe2lem11 10532 fpwwe2lem12 10533 fpwwelem 10536 climrel 15399 rlimrel 15400 brstruct 17059 sscrel 17720 gaorber 19220 sylow2a 19531 efgrelexlemb 19662 efgcpbllemb 19667 rellindf 21745 psrbaglesupp 21859 2ndcctbss 23370 refrel 23423 vitalilem1 25536 lgsquadlem1 27318 lgsquadlem2 27319 dmscut 27752 relsubgr 29247 vcrel 30540 h2hlm 30960 hlimi 31168 erler 33232 relfldext 33657 finextfldext 33677 relmntop 34037 relae 34253 fineqvnttrclse 35144 fnerel 36382 filnetlem3 36424 brabg2 37756 heiborlem3 37852 heiborlem4 37853 relrngo 37935 isdivrngo 37989 drngoi 37990 isdrngo1 37995 riscer 38027 relcoss 38524 relssr 38591 prter1 38977 prter3 38980 prjsper 42700 reldvds 44407 nelbrim 47374 rellininds 48543 |
| Copyright terms: Public domain | W3C validator |