![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relopabiv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2155 and ax-12 2172, see relopabi 5823. (Contributed by BJ, 22-Jul-2023.) |
Ref | Expression |
---|---|
relopabiv.1 | ⊢ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Ref | Expression |
---|---|
relopabiv | ⊢ Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3479 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 3479 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | pm3.2i 472 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
5 | 4 | ssopab2i 5551 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
7 | df-xp 5683 | . . 3 ⊢ (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
8 | 5, 6, 7 | 3sstr4i 4026 | . 2 ⊢ 𝐴 ⊆ (V × V) |
9 | df-rel 5684 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
10 | 8, 9 | mpbir 230 | 1 ⊢ Rel 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3949 {copab 5211 × cxp 5675 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-opab 5212 df-xp 5683 df-rel 5684 |
This theorem is referenced by: relopabv 5822 mptrel 5826 reli 5827 rele 5828 relcnv 6104 relco 6108 brfvopabrbr 6996 reloprab 7468 reldmoprab 7514 relrpss 7714 eqer 8738 ecopover 8815 relen 8944 reldom 8945 relfsupp 9363 relwdom 9561 fpwwe2lem2 10627 fpwwe2lem3 10628 fpwwe2lem5 10630 fpwwe2lem6 10631 fpwwe2lem8 10633 fpwwe2lem10 10635 fpwwe2lem11 10636 fpwwe2lem12 10637 fpwwelem 10640 climrel 15436 rlimrel 15437 brstruct 17081 sscrel 17760 gaorber 19172 sylow2a 19487 efgrelexlemb 19618 efgcpbllemb 19623 rellindf 21363 psrbaglesupp 21477 2ndcctbss 22959 refrel 23012 vitalilem1 25125 lgsquadlem1 26883 lgsquadlem2 26884 dmscut 27312 relsubgr 28526 vcrel 29813 h2hlm 30233 hlimi 30441 relfldext 32725 relmntop 33004 relae 33238 fnerel 35223 filnetlem3 35265 brabg2 36585 heiborlem3 36681 heiborlem4 36682 relrngo 36764 isdivrngo 36818 drngoi 36819 isdrngo1 36824 riscer 36856 relcoss 37293 relssr 37370 prter1 37749 prter3 37752 prjsper 41350 reldvds 43074 nelbrim 45983 isomgrrel 46490 rellininds 47124 |
Copyright terms: Public domain | W3C validator |