| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relopabiv | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2158 and ax-12 2178, see relopabi 5788. (Contributed by BJ, 22-Jul-2023.) |
| Ref | Expression |
|---|---|
| relopabiv.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| relopabiv | ⊢ Rel 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vex 3454 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
| 5 | 4 | ssopab2i 5513 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
| 6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 7 | df-xp 5647 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
| 8 | 5, 6, 7 | 3sstr4i 4001 | . 2 ⊢ 𝐴 ⊆ (V × V) |
| 9 | df-rel 5648 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ Rel 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 {copab 5172 × cxp 5639 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: relopabv 5787 mptrel 5791 reli 5792 rele 5793 relcnv 6078 relco 6082 brfvopabrbr 6968 reloprab 7451 reldmoprab 7499 relrpss 7703 eqer 8710 ecopover 8797 relen 8926 reldom 8927 relfsupp 9321 relwdom 9526 fpwwe2lem2 10592 fpwwe2lem3 10593 fpwwe2lem5 10595 fpwwe2lem6 10596 fpwwe2lem8 10598 fpwwe2lem10 10600 fpwwe2lem11 10601 fpwwe2lem12 10602 fpwwelem 10605 climrel 15465 rlimrel 15466 brstruct 17125 sscrel 17782 gaorber 19247 sylow2a 19556 efgrelexlemb 19687 efgcpbllemb 19692 rellindf 21724 psrbaglesupp 21838 2ndcctbss 23349 refrel 23402 vitalilem1 25516 lgsquadlem1 27298 lgsquadlem2 27299 dmscut 27730 relsubgr 29203 vcrel 30496 h2hlm 30916 hlimi 31124 erler 33223 relfldext 33647 relmntop 34021 relae 34237 fnerel 36333 filnetlem3 36375 brabg2 37718 heiborlem3 37814 heiborlem4 37815 relrngo 37897 isdivrngo 37951 drngoi 37952 isdrngo1 37957 riscer 37989 relcoss 38421 relssr 38498 prter1 38879 prter3 38882 prjsper 42603 reldvds 44311 nelbrim 47280 rellininds 48436 |
| Copyright terms: Public domain | W3C validator |