| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relopabiv | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2158 and ax-12 2178, see relopabi 5776. (Contributed by BJ, 22-Jul-2023.) |
| Ref | Expression |
|---|---|
| relopabiv.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| relopabiv | ⊢ Rel 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3448 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vex 3448 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
| 5 | 4 | ssopab2i 5505 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
| 6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 7 | df-xp 5637 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
| 8 | 5, 6, 7 | 3sstr4i 3995 | . 2 ⊢ 𝐴 ⊆ (V × V) |
| 9 | df-rel 5638 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ Rel 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 {copab 5164 × cxp 5629 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 |
| This theorem is referenced by: relopabv 5775 mptrel 5779 reli 5780 rele 5781 relcnv 6064 relco 6068 brfvopabrbr 6947 reloprab 7428 reldmoprab 7476 relrpss 7680 eqer 8684 ecopover 8771 relen 8900 reldom 8901 relfsupp 9290 relwdom 9495 fpwwe2lem2 10561 fpwwe2lem3 10562 fpwwe2lem5 10564 fpwwe2lem6 10565 fpwwe2lem8 10567 fpwwe2lem10 10569 fpwwe2lem11 10570 fpwwe2lem12 10571 fpwwelem 10574 climrel 15434 rlimrel 15435 brstruct 17094 sscrel 17755 gaorber 19222 sylow2a 19533 efgrelexlemb 19664 efgcpbllemb 19669 rellindf 21750 psrbaglesupp 21864 2ndcctbss 23375 refrel 23428 vitalilem1 25542 lgsquadlem1 27324 lgsquadlem2 27325 dmscut 27757 relsubgr 29249 vcrel 30539 h2hlm 30959 hlimi 31167 erler 33232 relfldext 33633 relmntop 34007 relae 34223 fnerel 36319 filnetlem3 36361 brabg2 37704 heiborlem3 37800 heiborlem4 37801 relrngo 37883 isdivrngo 37937 drngoi 37938 isdrngo1 37943 riscer 37975 relcoss 38407 relssr 38484 prter1 38865 prter3 38868 prjsper 42589 reldvds 44297 nelbrim 47269 rellininds 48425 |
| Copyright terms: Public domain | W3C validator |