![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relopabiv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2154 and ax-12 2171, see relopabi 5822. (Contributed by BJ, 22-Jul-2023.) |
Ref | Expression |
---|---|
relopabiv.1 | ⊢ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Ref | Expression |
---|---|
relopabiv | ⊢ Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 3478 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | pm3.2i 471 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
5 | 4 | ssopab2i 5550 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
7 | df-xp 5682 | . . 3 ⊢ (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
8 | 5, 6, 7 | 3sstr4i 4025 | . 2 ⊢ 𝐴 ⊆ (V × V) |
9 | df-rel 5683 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
10 | 8, 9 | mpbir 230 | 1 ⊢ Rel 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 {copab 5210 × cxp 5674 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 df-opab 5211 df-xp 5682 df-rel 5683 |
This theorem is referenced by: relopabv 5821 mptrel 5825 reli 5826 rele 5827 relcnv 6103 relco 6107 brfvopabrbr 6995 reloprab 7470 reldmoprab 7516 relrpss 7716 eqer 8740 ecopover 8817 relen 8946 reldom 8947 relfsupp 9365 relwdom 9563 fpwwe2lem2 10629 fpwwe2lem3 10630 fpwwe2lem5 10632 fpwwe2lem6 10633 fpwwe2lem8 10635 fpwwe2lem10 10637 fpwwe2lem11 10638 fpwwe2lem12 10639 fpwwelem 10642 climrel 15438 rlimrel 15439 brstruct 17083 sscrel 17762 gaorber 19174 sylow2a 19489 efgrelexlemb 19620 efgcpbllemb 19625 rellindf 21369 psrbaglesupp 21483 2ndcctbss 22966 refrel 23019 vitalilem1 25132 lgsquadlem1 26890 lgsquadlem2 26891 dmscut 27320 relsubgr 28564 vcrel 29851 h2hlm 30271 hlimi 30479 relfldext 32784 relmntop 33073 relae 33307 fnerel 35309 filnetlem3 35351 brabg2 36671 heiborlem3 36767 heiborlem4 36768 relrngo 36850 isdivrngo 36904 drngoi 36905 isdrngo1 36910 riscer 36942 relcoss 37379 relssr 37456 prter1 37835 prter3 37838 prjsper 41432 reldvds 43156 nelbrim 46062 isomgrrel 46569 rellininds 47202 |
Copyright terms: Public domain | W3C validator |