![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relopabiv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2158 and ax-12 2178, see relopabi 5846. (Contributed by BJ, 22-Jul-2023.) |
Ref | Expression |
---|---|
relopabiv.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
relopabiv | ⊢ Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 3492 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
5 | 4 | ssopab2i 5569 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
7 | df-xp 5706 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
8 | 5, 6, 7 | 3sstr4i 4052 | . 2 ⊢ 𝐴 ⊆ (V × V) |
9 | df-rel 5707 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
10 | 8, 9 | mpbir 231 | 1 ⊢ Rel 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {copab 5228 × cxp 5698 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: relopabv 5845 mptrel 5849 reli 5850 rele 5851 relcnv 6134 relco 6138 brfvopabrbr 7026 reloprab 7509 reldmoprab 7556 relrpss 7759 eqer 8799 ecopover 8879 relen 9008 reldom 9009 relfsupp 9433 relwdom 9635 fpwwe2lem2 10701 fpwwe2lem3 10702 fpwwe2lem5 10704 fpwwe2lem6 10705 fpwwe2lem8 10707 fpwwe2lem10 10709 fpwwe2lem11 10710 fpwwe2lem12 10711 fpwwelem 10714 climrel 15538 rlimrel 15539 brstruct 17195 sscrel 17874 gaorber 19348 sylow2a 19661 efgrelexlemb 19792 efgcpbllemb 19797 rellindf 21851 psrbaglesupp 21965 2ndcctbss 23484 refrel 23537 vitalilem1 25662 lgsquadlem1 27442 lgsquadlem2 27443 dmscut 27874 relsubgr 29304 vcrel 30592 h2hlm 31012 hlimi 31220 erler 33237 relfldext 33659 relmntop 33970 relae 34204 fnerel 36304 filnetlem3 36346 brabg2 37677 heiborlem3 37773 heiborlem4 37774 relrngo 37856 isdivrngo 37910 drngoi 37911 isdrngo1 37916 riscer 37948 relcoss 38379 relssr 38456 prter1 38835 prter3 38838 prjsper 42563 reldvds 44284 nelbrim 47190 rellininds 48172 |
Copyright terms: Public domain | W3C validator |