![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relopabiv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2154 and ax-12 2174, see relopabi 5834. (Contributed by BJ, 22-Jul-2023.) |
Ref | Expression |
---|---|
relopabiv.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
relopabiv | ⊢ Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3481 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 3481 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
5 | 4 | ssopab2i 5559 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
7 | df-xp 5694 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
8 | 5, 6, 7 | 3sstr4i 4038 | . 2 ⊢ 𝐴 ⊆ (V × V) |
9 | df-rel 5695 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
10 | 8, 9 | mpbir 231 | 1 ⊢ Rel 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ⊆ wss 3962 {copab 5209 × cxp 5686 Rel wrel 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-opab 5210 df-xp 5694 df-rel 5695 |
This theorem is referenced by: relopabv 5833 mptrel 5837 reli 5838 rele 5839 relcnv 6124 relco 6128 brfvopabrbr 7012 reloprab 7491 reldmoprab 7538 relrpss 7742 eqer 8779 ecopover 8859 relen 8988 reldom 8989 relfsupp 9400 relwdom 9603 fpwwe2lem2 10669 fpwwe2lem3 10670 fpwwe2lem5 10672 fpwwe2lem6 10673 fpwwe2lem8 10675 fpwwe2lem10 10677 fpwwe2lem11 10678 fpwwe2lem12 10679 fpwwelem 10682 climrel 15524 rlimrel 15525 brstruct 17181 sscrel 17860 gaorber 19338 sylow2a 19651 efgrelexlemb 19782 efgcpbllemb 19787 rellindf 21845 psrbaglesupp 21959 2ndcctbss 23478 refrel 23531 vitalilem1 25656 lgsquadlem1 27438 lgsquadlem2 27439 dmscut 27870 relsubgr 29300 vcrel 30588 h2hlm 31008 hlimi 31216 erler 33251 relfldext 33673 relmntop 33986 relae 34220 fnerel 36320 filnetlem3 36362 brabg2 37703 heiborlem3 37799 heiborlem4 37800 relrngo 37882 isdivrngo 37936 drngoi 37937 isdrngo1 37942 riscer 37974 relcoss 38404 relssr 38481 prter1 38860 prter3 38863 prjsper 42594 reldvds 44310 nelbrim 47224 rellininds 48288 |
Copyright terms: Public domain | W3C validator |