![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relopabiv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2147 and ax-12 2167, see relopabi 5828. (Contributed by BJ, 22-Jul-2023.) |
Ref | Expression |
---|---|
relopabiv.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
relopabiv | ⊢ Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3466 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 3466 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | pm3.2i 469 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
5 | 4 | ssopab2i 5556 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
7 | df-xp 5688 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
8 | 5, 6, 7 | 3sstr4i 4023 | . 2 ⊢ 𝐴 ⊆ (V × V) |
9 | df-rel 5689 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
10 | 8, 9 | mpbir 230 | 1 ⊢ Rel 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3947 {copab 5215 × cxp 5680 Rel wrel 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-ss 3964 df-opab 5216 df-xp 5688 df-rel 5689 |
This theorem is referenced by: relopabv 5827 mptrel 5831 reli 5832 rele 5833 relcnv 6114 relco 6118 brfvopabrbr 7006 reloprab 7484 reldmoprab 7531 relrpss 7735 eqer 8770 ecopover 8850 relen 8979 reldom 8980 relfsupp 9407 relwdom 9609 fpwwe2lem2 10675 fpwwe2lem3 10676 fpwwe2lem5 10678 fpwwe2lem6 10679 fpwwe2lem8 10681 fpwwe2lem10 10683 fpwwe2lem11 10684 fpwwe2lem12 10685 fpwwelem 10688 climrel 15494 rlimrel 15495 brstruct 17150 sscrel 17829 gaorber 19302 sylow2a 19617 efgrelexlemb 19748 efgcpbllemb 19753 rellindf 21806 psrbaglesupp 21921 2ndcctbss 23450 refrel 23503 vitalilem1 25628 lgsquadlem1 27409 lgsquadlem2 27410 dmscut 27841 relsubgr 29205 vcrel 30493 h2hlm 30913 hlimi 31121 erler 33120 relfldext 33535 relmntop 33839 relae 34073 fnerel 36050 filnetlem3 36092 brabg2 37418 heiborlem3 37514 heiborlem4 37515 relrngo 37597 isdivrngo 37651 drngoi 37652 isdrngo1 37657 riscer 37689 relcoss 38121 relssr 38198 prter1 38577 prter3 38580 prjsper 42262 reldvds 43989 nelbrim 46888 rellininds 47826 |
Copyright terms: Public domain | W3C validator |