| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relopabiv | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2157 and ax-12 2177, see relopabi 5801. (Contributed by BJ, 22-Jul-2023.) |
| Ref | Expression |
|---|---|
| relopabiv.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| relopabiv | ⊢ Rel 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vex 3463 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
| 5 | 4 | ssopab2i 5525 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
| 6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 7 | df-xp 5660 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
| 8 | 5, 6, 7 | 3sstr4i 4010 | . 2 ⊢ 𝐴 ⊆ (V × V) |
| 9 | df-rel 5661 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ Rel 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 {copab 5181 × cxp 5652 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: relopabv 5800 mptrel 5804 reli 5805 rele 5806 relcnv 6091 relco 6095 brfvopabrbr 6983 reloprab 7466 reldmoprab 7514 relrpss 7718 eqer 8755 ecopover 8835 relen 8964 reldom 8965 relfsupp 9375 relwdom 9580 fpwwe2lem2 10646 fpwwe2lem3 10647 fpwwe2lem5 10649 fpwwe2lem6 10650 fpwwe2lem8 10652 fpwwe2lem10 10654 fpwwe2lem11 10655 fpwwe2lem12 10656 fpwwelem 10659 climrel 15508 rlimrel 15509 brstruct 17167 sscrel 17826 gaorber 19291 sylow2a 19600 efgrelexlemb 19731 efgcpbllemb 19736 rellindf 21768 psrbaglesupp 21882 2ndcctbss 23393 refrel 23446 vitalilem1 25561 lgsquadlem1 27343 lgsquadlem2 27344 dmscut 27775 relsubgr 29248 vcrel 30541 h2hlm 30961 hlimi 31169 erler 33260 relfldext 33686 relmntop 34055 relae 34271 fnerel 36356 filnetlem3 36398 brabg2 37741 heiborlem3 37837 heiborlem4 37838 relrngo 37920 isdivrngo 37974 drngoi 37975 isdrngo1 37980 riscer 38012 relcoss 38441 relssr 38518 prter1 38897 prter3 38900 prjsper 42631 reldvds 44339 nelbrim 47304 rellininds 48419 |
| Copyright terms: Public domain | W3C validator |