| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relopabiv | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2158 and ax-12 2178, see relopabi 5785. (Contributed by BJ, 22-Jul-2023.) |
| Ref | Expression |
|---|---|
| relopabiv.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| relopabiv | ⊢ Rel 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vex 3451 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
| 5 | 4 | ssopab2i 5510 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
| 6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 7 | df-xp 5644 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
| 8 | 5, 6, 7 | 3sstr4i 3998 | . 2 ⊢ 𝐴 ⊆ (V × V) |
| 9 | df-rel 5645 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ Rel 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 {copab 5169 × cxp 5636 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: relopabv 5784 mptrel 5788 reli 5789 rele 5790 relcnv 6075 relco 6079 brfvopabrbr 6965 reloprab 7448 reldmoprab 7496 relrpss 7700 eqer 8707 ecopover 8794 relen 8923 reldom 8924 relfsupp 9314 relwdom 9519 fpwwe2lem2 10585 fpwwe2lem3 10586 fpwwe2lem5 10588 fpwwe2lem6 10589 fpwwe2lem8 10591 fpwwe2lem10 10593 fpwwe2lem11 10594 fpwwe2lem12 10595 fpwwelem 10598 climrel 15458 rlimrel 15459 brstruct 17118 sscrel 17775 gaorber 19240 sylow2a 19549 efgrelexlemb 19680 efgcpbllemb 19685 rellindf 21717 psrbaglesupp 21831 2ndcctbss 23342 refrel 23395 vitalilem1 25509 lgsquadlem1 27291 lgsquadlem2 27292 dmscut 27723 relsubgr 29196 vcrel 30489 h2hlm 30909 hlimi 31117 erler 33216 relfldext 33640 relmntop 34014 relae 34230 fnerel 36326 filnetlem3 36368 brabg2 37711 heiborlem3 37807 heiborlem4 37808 relrngo 37890 isdivrngo 37944 drngoi 37945 isdrngo1 37950 riscer 37982 relcoss 38414 relssr 38491 prter1 38872 prter3 38875 prjsper 42596 reldvds 44304 nelbrim 47276 rellininds 48432 |
| Copyright terms: Public domain | W3C validator |