Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq2 | Structured version Visualization version GIF version |
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2 6521 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
2 | 1 | anbi1d 629 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶))) |
3 | df-f 6434 | . 2 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
4 | df-f 6434 | . 2 ⊢ (𝐹:𝐵⟶𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ⊆ wss 3891 ran crn 5589 Fn wfn 6425 ⟶wf 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-cleq 2731 df-fn 6433 df-f 6434 |
This theorem is referenced by: feq23 6580 feq2d 6582 feq2i 6588 f00 6652 f0dom0 6654 f1eq2 6662 fressnfv 7026 mapvalg 8599 fsetexb 8626 map0g 8646 ac6sfi 9019 cofsmo 10009 axcc4dom 10181 ac6sg 10228 isghm 18815 pjdm2 20899 cmpcovf 22523 ulmval 25520 measval 32145 isrnmeas 32147 poseq 33781 soseq 33782 elno2 33836 noreson 33842 bj-finsumval0 35435 mbfresfi 35802 stoweidlem62 43557 hoidmvval0b 44082 vonioo 44174 vonicc 44177 f102g 46131 f1mo 46132 |
Copyright terms: Public domain | W3C validator |