| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2 6630 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶))) |
| 3 | df-f 6535 | . 2 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
| 4 | df-f 6535 | . 2 ⊢ (𝐹:𝐵⟶𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3926 ran crn 5655 Fn wfn 6526 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-fn 6534 df-f 6535 |
| This theorem is referenced by: feq23 6689 feq2d 6692 feq2i 6698 f00 6760 f0dom0 6762 f1eq2 6770 fressnfv 7150 poseq 8157 soseq 8158 mapvalg 8850 fsetexb 8878 map0g 8898 ac6sfi 9292 cofsmo 10283 axcc4dom 10455 ac6sg 10502 isghm 19198 isghmOLD 19199 pjdm2 21671 cmpcovf 23329 ulmval 26341 elno2 27618 noreson 27624 measval 34229 isrnmeas 34231 bj-finsumval0 37303 mbfresfi 37690 sn-isghm 42696 dfno2 43452 relpeq4 44972 stoweidlem62 46091 hoidmvval0b 46619 vonioo 46711 vonicc 46714 f102g 48830 f1mo 48831 |
| Copyright terms: Public domain | W3C validator |