MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq2 Structured version   Visualization version   GIF version

Theorem feq2 6630
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
feq2 (𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))

Proof of Theorem feq2
StepHypRef Expression
1 fneq2 6573 . . 3 (𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
21anbi1d 631 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹𝐶)))
3 df-f 6485 . 2 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶))
4 df-f 6485 . 2 (𝐹:𝐵𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹𝐶))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wss 3902  ran crn 5617   Fn wfn 6476  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-fn 6484  df-f 6485
This theorem is referenced by:  feq23  6632  feq2d  6635  feq2i  6643  f00  6705  f0dom0  6707  f1eq2  6715  fressnfv  7093  poseq  8088  soseq  8089  mapvalg  8760  fsetexb  8788  map0g  8808  ac6sfi  9168  cofsmo  10160  axcc4dom  10332  ac6sg  10379  isghm  19128  isghmOLD  19129  pjdm2  21649  cmpcovf  23307  ulmval  26317  elno2  27594  noreson  27600  measval  34209  isrnmeas  34211  bj-finsumval0  37325  mbfresfi  37712  sn-isghm  42712  dfno2  43467  relpeq4  44986  stoweidlem62  46106  hoidmvval0b  46634  vonioo  46726  vonicc  46729  f102g  48889  f1mo  48890
  Copyright terms: Public domain W3C validator