| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2 6573 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶))) |
| 3 | df-f 6485 | . 2 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
| 4 | df-f 6485 | . 2 ⊢ (𝐹:𝐵⟶𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ⊆ wss 3902 ran crn 5617 Fn wfn 6476 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-fn 6484 df-f 6485 |
| This theorem is referenced by: feq23 6632 feq2d 6635 feq2i 6643 f00 6705 f0dom0 6707 f1eq2 6715 fressnfv 7093 poseq 8088 soseq 8089 mapvalg 8760 fsetexb 8788 map0g 8808 ac6sfi 9168 cofsmo 10160 axcc4dom 10332 ac6sg 10379 isghm 19128 isghmOLD 19129 pjdm2 21649 cmpcovf 23307 ulmval 26317 elno2 27594 noreson 27600 measval 34209 isrnmeas 34211 bj-finsumval0 37325 mbfresfi 37712 sn-isghm 42712 dfno2 43467 relpeq4 44986 stoweidlem62 46106 hoidmvval0b 46634 vonioo 46726 vonicc 46729 f102g 48889 f1mo 48890 |
| Copyright terms: Public domain | W3C validator |