MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq2 Structured version   Visualization version   GIF version

Theorem feq2 6729
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
feq2 (𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))

Proof of Theorem feq2
StepHypRef Expression
1 fneq2 6671 . . 3 (𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
21anbi1d 630 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹𝐶)))
3 df-f 6577 . 2 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶))
4 df-f 6577 . 2 (𝐹:𝐵𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹𝐶))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wss 3976  ran crn 5701   Fn wfn 6568  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-fn 6576  df-f 6577
This theorem is referenced by:  feq23  6731  feq2d  6733  feq2i  6739  f00  6803  f0dom0  6805  f1eq2  6813  fressnfv  7194  poseq  8199  soseq  8200  mapvalg  8894  fsetexb  8922  map0g  8942  ac6sfi  9348  cofsmo  10338  axcc4dom  10510  ac6sg  10557  isghm  19255  isghmOLD  19256  pjdm2  21754  cmpcovf  23420  ulmval  26441  elno2  27717  noreson  27723  measval  34162  isrnmeas  34164  bj-finsumval0  37251  mbfresfi  37626  sn-isghm  42628  dfno2  43390  stoweidlem62  45983  hoidmvval0b  46511  vonioo  46603  vonicc  46606  f102g  48565  f1mo  48566
  Copyright terms: Public domain W3C validator