Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq2 | Structured version Visualization version GIF version |
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2 6556 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶))) |
3 | df-f 6462 | . 2 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
4 | df-f 6462 | . 2 ⊢ (𝐹:𝐵⟶𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ⊆ wss 3892 ran crn 5601 Fn wfn 6453 ⟶wf 6454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-cleq 2728 df-fn 6461 df-f 6462 |
This theorem is referenced by: feq23 6614 feq2d 6616 feq2i 6622 f00 6686 f0dom0 6688 f1eq2 6696 fressnfv 7064 mapvalg 8656 fsetexb 8683 map0g 8703 ac6sfi 9102 cofsmo 10071 axcc4dom 10243 ac6sg 10290 isghm 18879 pjdm2 20963 cmpcovf 22587 ulmval 25584 measval 32211 isrnmeas 32213 poseq 33847 soseq 33848 elno2 33902 noreson 33908 bj-finsumval0 35500 mbfresfi 35867 stoweidlem62 43652 hoidmvval0b 44178 vonioo 44270 vonicc 44273 f102g 46237 f1mo 46238 |
Copyright terms: Public domain | W3C validator |