![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq2 | Structured version Visualization version GIF version |
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2 6671 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
2 | 1 | anbi1d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶))) |
3 | df-f 6577 | . 2 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
4 | df-f 6577 | . 2 ⊢ (𝐹:𝐵⟶𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ⊆ wss 3976 ran crn 5701 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-fn 6576 df-f 6577 |
This theorem is referenced by: feq23 6731 feq2d 6733 feq2i 6739 f00 6803 f0dom0 6805 f1eq2 6813 fressnfv 7194 poseq 8199 soseq 8200 mapvalg 8894 fsetexb 8922 map0g 8942 ac6sfi 9348 cofsmo 10338 axcc4dom 10510 ac6sg 10557 isghm 19255 isghmOLD 19256 pjdm2 21754 cmpcovf 23420 ulmval 26441 elno2 27717 noreson 27723 measval 34162 isrnmeas 34164 bj-finsumval0 37251 mbfresfi 37626 sn-isghm 42628 dfno2 43390 stoweidlem62 45983 hoidmvval0b 46511 vonioo 46603 vonicc 46606 f102g 48565 f1mo 48566 |
Copyright terms: Public domain | W3C validator |