![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq2 | Structured version Visualization version GIF version |
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2 6642 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶))) |
3 | df-f 6548 | . 2 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
4 | df-f 6548 | . 2 ⊢ (𝐹:𝐵⟶𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ⊆ wss 3949 ran crn 5678 Fn wfn 6539 ⟶wf 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-fn 6547 df-f 6548 |
This theorem is referenced by: feq23 6702 feq2d 6704 feq2i 6710 f00 6774 f0dom0 6776 f1eq2 6784 fressnfv 7158 poseq 8144 soseq 8145 mapvalg 8830 fsetexb 8858 map0g 8878 ac6sfi 9287 cofsmo 10264 axcc4dom 10436 ac6sg 10483 isghm 19092 pjdm2 21266 cmpcovf 22895 ulmval 25892 elno2 27157 noreson 27163 measval 33196 isrnmeas 33198 bj-finsumval0 36166 mbfresfi 36534 dfno2 42179 stoweidlem62 44778 hoidmvval0b 45306 vonioo 45398 vonicc 45401 f102g 47518 f1mo 47519 |
Copyright terms: Public domain | W3C validator |