MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq2 Structured version   Visualization version   GIF version

Theorem feq2 6687
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
feq2 (𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))

Proof of Theorem feq2
StepHypRef Expression
1 fneq2 6630 . . 3 (𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
21anbi1d 631 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹𝐶)))
3 df-f 6535 . 2 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶))
4 df-f 6535 . 2 (𝐹:𝐵𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹𝐶))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wss 3926  ran crn 5655   Fn wfn 6526  wf 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727  df-fn 6534  df-f 6535
This theorem is referenced by:  feq23  6689  feq2d  6692  feq2i  6698  f00  6760  f0dom0  6762  f1eq2  6770  fressnfv  7150  poseq  8157  soseq  8158  mapvalg  8850  fsetexb  8878  map0g  8898  ac6sfi  9292  cofsmo  10283  axcc4dom  10455  ac6sg  10502  isghm  19198  isghmOLD  19199  pjdm2  21671  cmpcovf  23329  ulmval  26341  elno2  27618  noreson  27624  measval  34229  isrnmeas  34231  bj-finsumval0  37303  mbfresfi  37690  sn-isghm  42696  dfno2  43452  relpeq4  44972  stoweidlem62  46091  hoidmvval0b  46619  vonioo  46711  vonicc  46714  f102g  48830  f1mo  48831
  Copyright terms: Public domain W3C validator