Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relsset | Structured version Visualization version GIF version |
Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
relsset | ⊢ Rel SSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sset 34203 | . . 3 ⊢ SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) | |
2 | difss 4072 | . . 3 ⊢ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V) | |
3 | 1, 2 | eqsstri 3960 | . 2 ⊢ SSet ⊆ (V × V) |
4 | df-rel 5607 | . 2 ⊢ (Rel SSet ↔ SSet ⊆ (V × V)) | |
5 | 3, 4 | mpbir 230 | 1 ⊢ Rel SSet |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3437 ∖ cdif 3889 ⊆ wss 3892 E cep 5505 × cxp 5598 ran crn 5601 Rel wrel 5605 ⊗ ctxp 34177 SSet csset 34179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-dif 3895 df-in 3899 df-ss 3909 df-rel 5607 df-sset 34203 |
This theorem is referenced by: brsset 34236 idsset 34237 |
Copyright terms: Public domain | W3C validator |