Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relsset Structured version   Visualization version   GIF version

Theorem relsset 35876
Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
relsset Rel SSet

Proof of Theorem relsset
StepHypRef Expression
1 df-sset 35844 . . 3 SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
2 difss 4099 . . 3 ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V)
31, 2eqsstri 3993 . 2 SSet ⊆ (V × V)
4 df-rel 5645 . 2 (Rel SSet SSet ⊆ (V × V))
53, 4mpbir 231 1 Rel SSet
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3447  cdif 3911  wss 3914   E cep 5537   × cxp 5636  ran crn 5639  Rel wrel 5643  ctxp 35818   SSet csset 35820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-ss 3931  df-rel 5645  df-sset 35844
This theorem is referenced by:  brsset  35877  idsset  35878
  Copyright terms: Public domain W3C validator