![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relsset | Structured version Visualization version GIF version |
Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
relsset | ⊢ Rel SSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sset 32556 | . . 3 ⊢ SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) | |
2 | difss 3960 | . . 3 ⊢ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V) | |
3 | 1, 2 | eqsstri 3854 | . 2 ⊢ SSet ⊆ (V × V) |
4 | df-rel 5364 | . 2 ⊢ (Rel SSet ↔ SSet ⊆ (V × V)) | |
5 | 3, 4 | mpbir 223 | 1 ⊢ Rel SSet |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3398 ∖ cdif 3789 ⊆ wss 3792 E cep 5267 × cxp 5355 ran crn 5358 Rel wrel 5362 ⊗ ctxp 32530 SSet csset 32532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-v 3400 df-dif 3795 df-in 3799 df-ss 3806 df-rel 5364 df-sset 32556 |
This theorem is referenced by: brsset 32589 idsset 32590 |
Copyright terms: Public domain | W3C validator |