Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relsset Structured version   Visualization version   GIF version

Theorem relsset 34281
Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
relsset Rel SSet

Proof of Theorem relsset
StepHypRef Expression
1 df-sset 34249 . . 3 SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
2 difss 4077 . . 3 ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V)
31, 2eqsstri 3965 . 2 SSet ⊆ (V × V)
4 df-rel 5621 . 2 (Rel SSet SSet ⊆ (V × V))
53, 4mpbir 230 1 Rel SSet
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3441  cdif 3894  wss 3897   E cep 5517   × cxp 5612  ran crn 5615  Rel wrel 5619  ctxp 34223   SSet csset 34225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-dif 3900  df-in 3904  df-ss 3914  df-rel 5621  df-sset 34249
This theorem is referenced by:  brsset  34282  idsset  34283
  Copyright terms: Public domain W3C validator