| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relsset | Structured version Visualization version GIF version | ||
| Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| relsset | ⊢ Rel SSet |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sset 35839 | . . 3 ⊢ SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) | |
| 2 | difss 4101 | . . 3 ⊢ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V) | |
| 3 | 1, 2 | eqsstri 3995 | . 2 ⊢ SSet ⊆ (V × V) |
| 4 | df-rel 5647 | . 2 ⊢ (Rel SSet ↔ SSet ⊆ (V × V)) | |
| 5 | 3, 4 | mpbir 231 | 1 ⊢ Rel SSet |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3450 ∖ cdif 3913 ⊆ wss 3916 E cep 5539 × cxp 5638 ran crn 5641 Rel wrel 5645 ⊗ ctxp 35813 SSet csset 35815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3919 df-ss 3933 df-rel 5647 df-sset 35839 |
| This theorem is referenced by: brsset 35872 idsset 35873 |
| Copyright terms: Public domain | W3C validator |