Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relsset Structured version   Visualization version   GIF version

Theorem relsset 35870
Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
relsset Rel SSet

Proof of Theorem relsset
StepHypRef Expression
1 df-sset 35838 . . 3 SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
2 difss 4146 . . 3 ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V)
31, 2eqsstri 4030 . 2 SSet ⊆ (V × V)
4 df-rel 5696 . 2 (Rel SSet SSet ⊆ (V × V))
53, 4mpbir 231 1 Rel SSet
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3478  cdif 3960  wss 3963   E cep 5588   × cxp 5687  ran crn 5690  Rel wrel 5694  ctxp 35812   SSet csset 35814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-ss 3980  df-rel 5696  df-sset 35838
This theorem is referenced by:  brsset  35871  idsset  35872
  Copyright terms: Public domain W3C validator