| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relsset | Structured version Visualization version GIF version | ||
| Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| relsset | ⊢ Rel SSet |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sset 35890 | . . 3 ⊢ SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) | |
| 2 | difss 4081 | . . 3 ⊢ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V) | |
| 3 | 1, 2 | eqsstri 3976 | . 2 ⊢ SSet ⊆ (V × V) |
| 4 | df-rel 5618 | . 2 ⊢ (Rel SSet ↔ SSet ⊆ (V × V)) | |
| 5 | 3, 4 | mpbir 231 | 1 ⊢ Rel SSet |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 E cep 5510 × cxp 5609 ran crn 5612 Rel wrel 5616 ⊗ ctxp 35864 SSet csset 35866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-ss 3914 df-rel 5618 df-sset 35890 |
| This theorem is referenced by: brsset 35923 idsset 35924 |
| Copyright terms: Public domain | W3C validator |