Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relsset Structured version   Visualization version   GIF version

Theorem relsset 34235
Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
relsset Rel SSet

Proof of Theorem relsset
StepHypRef Expression
1 df-sset 34203 . . 3 SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
2 difss 4072 . . 3 ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V)
31, 2eqsstri 3960 . 2 SSet ⊆ (V × V)
4 df-rel 5607 . 2 (Rel SSet SSet ⊆ (V × V))
53, 4mpbir 230 1 Rel SSet
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3437  cdif 3889  wss 3892   E cep 5505   × cxp 5598  ran crn 5601  Rel wrel 5605  ctxp 34177   SSet csset 34179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-dif 3895  df-in 3899  df-ss 3909  df-rel 5607  df-sset 34203
This theorem is referenced by:  brsset  34236  idsset  34237
  Copyright terms: Public domain W3C validator