Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relsset Structured version   Visualization version   GIF version

Theorem relsset 35922
Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
relsset Rel SSet

Proof of Theorem relsset
StepHypRef Expression
1 df-sset 35890 . . 3 SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
2 difss 4081 . . 3 ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V)
31, 2eqsstri 3976 . 2 SSet ⊆ (V × V)
4 df-rel 5618 . 2 (Rel SSet SSet ⊆ (V × V))
53, 4mpbir 231 1 Rel SSet
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436  cdif 3894  wss 3897   E cep 5510   × cxp 5609  ran crn 5612  Rel wrel 5616  ctxp 35864   SSet csset 35866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-ss 3914  df-rel 5618  df-sset 35890
This theorem is referenced by:  brsset  35923  idsset  35924
  Copyright terms: Public domain W3C validator