| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relsset | Structured version Visualization version GIF version | ||
| Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| relsset | ⊢ Rel SSet |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sset 35844 | . . 3 ⊢ SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) | |
| 2 | difss 4099 | . . 3 ⊢ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V) | |
| 3 | 1, 2 | eqsstri 3993 | . 2 ⊢ SSet ⊆ (V × V) |
| 4 | df-rel 5645 | . 2 ⊢ (Rel SSet ↔ SSet ⊆ (V × V)) | |
| 5 | 3, 4 | mpbir 231 | 1 ⊢ Rel SSet |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 E cep 5537 × cxp 5636 ran crn 5639 Rel wrel 5643 ⊗ ctxp 35818 SSet csset 35820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-ss 3931 df-rel 5645 df-sset 35844 |
| This theorem is referenced by: brsset 35877 idsset 35878 |
| Copyright terms: Public domain | W3C validator |