Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relsset Structured version   Visualization version   GIF version

Theorem relsset 34169
Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
relsset Rel SSet

Proof of Theorem relsset
StepHypRef Expression
1 df-sset 34137 . . 3 SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
2 difss 4070 . . 3 ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V)
31, 2eqsstri 3959 . 2 SSet ⊆ (V × V)
4 df-rel 5595 . 2 (Rel SSet SSet ⊆ (V × V))
53, 4mpbir 230 1 Rel SSet
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3430  cdif 3888  wss 3891   E cep 5493   × cxp 5586  ran crn 5589  Rel wrel 5593  ctxp 34111   SSet csset 34113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-dif 3894  df-in 3898  df-ss 3908  df-rel 5595  df-sset 34137
This theorem is referenced by:  brsset  34170  idsset  34171
  Copyright terms: Public domain W3C validator