Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relsset | Structured version Visualization version GIF version |
Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
relsset | ⊢ Rel SSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sset 34137 | . . 3 ⊢ SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) | |
2 | difss 4070 | . . 3 ⊢ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V) | |
3 | 1, 2 | eqsstri 3959 | . 2 ⊢ SSet ⊆ (V × V) |
4 | df-rel 5595 | . 2 ⊢ (Rel SSet ↔ SSet ⊆ (V × V)) | |
5 | 3, 4 | mpbir 230 | 1 ⊢ Rel SSet |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3430 ∖ cdif 3888 ⊆ wss 3891 E cep 5493 × cxp 5586 ran crn 5589 Rel wrel 5593 ⊗ ctxp 34111 SSet csset 34113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-rel 5595 df-sset 34137 |
This theorem is referenced by: brsset 34170 idsset 34171 |
Copyright terms: Public domain | W3C validator |