![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relsset | Structured version Visualization version GIF version |
Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
relsset | ⊢ Rel SSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sset 35299 | . . 3 ⊢ SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) | |
2 | difss 4131 | . . 3 ⊢ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V) | |
3 | 1, 2 | eqsstri 4016 | . 2 ⊢ SSet ⊆ (V × V) |
4 | df-rel 5683 | . 2 ⊢ (Rel SSet ↔ SSet ⊆ (V × V)) | |
5 | 3, 4 | mpbir 230 | 1 ⊢ Rel SSet |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3473 ∖ cdif 3945 ⊆ wss 3948 E cep 5579 × cxp 5674 ran crn 5677 Rel wrel 5681 ⊗ ctxp 35273 SSet csset 35275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-dif 3951 df-in 3955 df-ss 3965 df-rel 5683 df-sset 35299 |
This theorem is referenced by: brsset 35332 idsset 35333 |
Copyright terms: Public domain | W3C validator |