Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relsset Structured version   Visualization version   GIF version

Theorem relsset 35852
Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
relsset Rel SSet

Proof of Theorem relsset
StepHypRef Expression
1 df-sset 35820 . . 3 SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
2 difss 4159 . . 3 ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V)
31, 2eqsstri 4043 . 2 SSet ⊆ (V × V)
4 df-rel 5707 . 2 (Rel SSet SSet ⊆ (V × V))
53, 4mpbir 231 1 Rel SSet
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3488  cdif 3973  wss 3976   E cep 5598   × cxp 5698  ran crn 5701  Rel wrel 5705  ctxp 35794   SSet csset 35796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-ss 3993  df-rel 5707  df-sset 35820
This theorem is referenced by:  brsset  35853  idsset  35854
  Copyright terms: Public domain W3C validator