Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsset Structured version   Visualization version   GIF version

Theorem brsset 35907
Description: For sets, the SSet binary relation is equivalent to the subset relationship. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypothesis
Ref Expression
brsset.1 𝐵 ∈ V
Assertion
Ref Expression
brsset (𝐴 SSet 𝐵𝐴𝐵)

Proof of Theorem brsset
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsset 35906 . . 3 Rel SSet
21brrelex1i 5710 . 2 (𝐴 SSet 𝐵𝐴 ∈ V)
3 brsset.1 . . 3 𝐵 ∈ V
43ssex 5291 . 2 (𝐴𝐵𝐴 ∈ V)
5 breq1 5122 . . 3 (𝑥 = 𝐴 → (𝑥 SSet 𝐵𝐴 SSet 𝐵))
6 sseq1 3984 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
7 opex 5439 . . . . . . 7 𝑥, 𝐵⟩ ∈ V
87elrn 5873 . . . . . 6 (⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )) ↔ ∃𝑦 𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩)
9 vex 3463 . . . . . . . . 9 𝑦 ∈ V
10 vex 3463 . . . . . . . . 9 𝑥 ∈ V
119, 10, 3brtxp 35898 . . . . . . . 8 (𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩ ↔ (𝑦 E 𝑥𝑦(V ∖ E )𝐵))
12 epel 5556 . . . . . . . . 9 (𝑦 E 𝑥𝑦𝑥)
13 brv 5447 . . . . . . . . . . 11 𝑦V𝐵
14 brdif 5172 . . . . . . . . . . 11 (𝑦(V ∖ E )𝐵 ↔ (𝑦V𝐵 ∧ ¬ 𝑦 E 𝐵))
1513, 14mpbiran 709 . . . . . . . . . 10 (𝑦(V ∖ E )𝐵 ↔ ¬ 𝑦 E 𝐵)
163epeli 5555 . . . . . . . . . 10 (𝑦 E 𝐵𝑦𝐵)
1715, 16xchbinx 334 . . . . . . . . 9 (𝑦(V ∖ E )𝐵 ↔ ¬ 𝑦𝐵)
1812, 17anbi12i 628 . . . . . . . 8 ((𝑦 E 𝑥𝑦(V ∖ E )𝐵) ↔ (𝑦𝑥 ∧ ¬ 𝑦𝐵))
1911, 18bitri 275 . . . . . . 7 (𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩ ↔ (𝑦𝑥 ∧ ¬ 𝑦𝐵))
2019exbii 1848 . . . . . 6 (∃𝑦 𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩ ↔ ∃𝑦(𝑦𝑥 ∧ ¬ 𝑦𝐵))
21 exanali 1859 . . . . . 6 (∃𝑦(𝑦𝑥 ∧ ¬ 𝑦𝐵) ↔ ¬ ∀𝑦(𝑦𝑥𝑦𝐵))
228, 20, 213bitrri 298 . . . . 5 (¬ ∀𝑦(𝑦𝑥𝑦𝐵) ↔ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
2322con1bii 356 . . . 4 (¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )) ↔ ∀𝑦(𝑦𝑥𝑦𝐵))
24 df-br 5120 . . . . 5 (𝑥 SSet 𝐵 ↔ ⟨𝑥, 𝐵⟩ ∈ SSet )
25 df-sset 35874 . . . . . . 7 SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
2625eleq2i 2826 . . . . . 6 (⟨𝑥, 𝐵⟩ ∈ SSet ↔ ⟨𝑥, 𝐵⟩ ∈ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))))
2710, 3opelvv 5694 . . . . . . 7 𝑥, 𝐵⟩ ∈ (V × V)
28 eldif 3936 . . . . . . 7 (⟨𝑥, 𝐵⟩ ∈ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ↔ (⟨𝑥, 𝐵⟩ ∈ (V × V) ∧ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E ))))
2927, 28mpbiran 709 . . . . . 6 (⟨𝑥, 𝐵⟩ ∈ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ↔ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
3026, 29bitri 275 . . . . 5 (⟨𝑥, 𝐵⟩ ∈ SSet ↔ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
3124, 30bitri 275 . . . 4 (𝑥 SSet 𝐵 ↔ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
32 df-ss 3943 . . . 4 (𝑥𝐵 ↔ ∀𝑦(𝑦𝑥𝑦𝐵))
3323, 31, 323bitr4i 303 . . 3 (𝑥 SSet 𝐵𝑥𝐵)
345, 6, 33vtoclbg 3536 . 2 (𝐴 ∈ V → (𝐴 SSet 𝐵𝐴𝐵))
352, 4, 34pm5.21nii 378 1 (𝐴 SSet 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538  wex 1779  wcel 2108  Vcvv 3459  cdif 3923  wss 3926  cop 4607   class class class wbr 5119   E cep 5552   × cxp 5652  ran crn 5655  ctxp 35848   SSet csset 35850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-eprel 5553  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-1st 7988  df-2nd 7989  df-txp 35872  df-sset 35874
This theorem is referenced by:  idsset  35908  dfon3  35910  imagesset  35971
  Copyright terms: Public domain W3C validator