Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsset Structured version   Visualization version   GIF version

Theorem brsset 36003
Description: For sets, the SSet binary relation is equivalent to the subset relationship. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypothesis
Ref Expression
brsset.1 𝐵 ∈ V
Assertion
Ref Expression
brsset (𝐴 SSet 𝐵𝐴𝐵)

Proof of Theorem brsset
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsset 36002 . . 3 Rel SSet
21brrelex1i 5677 . 2 (𝐴 SSet 𝐵𝐴 ∈ V)
3 brsset.1 . . 3 𝐵 ∈ V
43ssex 5263 . 2 (𝐴𝐵𝐴 ∈ V)
5 breq1 5098 . . 3 (𝑥 = 𝐴 → (𝑥 SSet 𝐵𝐴 SSet 𝐵))
6 sseq1 3956 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
7 opex 5409 . . . . . . 7 𝑥, 𝐵⟩ ∈ V
87elrn 5839 . . . . . 6 (⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )) ↔ ∃𝑦 𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩)
9 vex 3441 . . . . . . . . 9 𝑦 ∈ V
10 vex 3441 . . . . . . . . 9 𝑥 ∈ V
119, 10, 3brtxp 35994 . . . . . . . 8 (𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩ ↔ (𝑦 E 𝑥𝑦(V ∖ E )𝐵))
12 epel 5524 . . . . . . . . 9 (𝑦 E 𝑥𝑦𝑥)
13 brv 5417 . . . . . . . . . . 11 𝑦V𝐵
14 brdif 5148 . . . . . . . . . . 11 (𝑦(V ∖ E )𝐵 ↔ (𝑦V𝐵 ∧ ¬ 𝑦 E 𝐵))
1513, 14mpbiran 709 . . . . . . . . . 10 (𝑦(V ∖ E )𝐵 ↔ ¬ 𝑦 E 𝐵)
163epeli 5523 . . . . . . . . . 10 (𝑦 E 𝐵𝑦𝐵)
1715, 16xchbinx 334 . . . . . . . . 9 (𝑦(V ∖ E )𝐵 ↔ ¬ 𝑦𝐵)
1812, 17anbi12i 628 . . . . . . . 8 ((𝑦 E 𝑥𝑦(V ∖ E )𝐵) ↔ (𝑦𝑥 ∧ ¬ 𝑦𝐵))
1911, 18bitri 275 . . . . . . 7 (𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩ ↔ (𝑦𝑥 ∧ ¬ 𝑦𝐵))
2019exbii 1849 . . . . . 6 (∃𝑦 𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩ ↔ ∃𝑦(𝑦𝑥 ∧ ¬ 𝑦𝐵))
21 exanali 1860 . . . . . 6 (∃𝑦(𝑦𝑥 ∧ ¬ 𝑦𝐵) ↔ ¬ ∀𝑦(𝑦𝑥𝑦𝐵))
228, 20, 213bitrri 298 . . . . 5 (¬ ∀𝑦(𝑦𝑥𝑦𝐵) ↔ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
2322con1bii 356 . . . 4 (¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )) ↔ ∀𝑦(𝑦𝑥𝑦𝐵))
24 df-br 5096 . . . . 5 (𝑥 SSet 𝐵 ↔ ⟨𝑥, 𝐵⟩ ∈ SSet )
25 df-sset 35970 . . . . . . 7 SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
2625eleq2i 2825 . . . . . 6 (⟨𝑥, 𝐵⟩ ∈ SSet ↔ ⟨𝑥, 𝐵⟩ ∈ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))))
2710, 3opelvv 5661 . . . . . . 7 𝑥, 𝐵⟩ ∈ (V × V)
28 eldif 3908 . . . . . . 7 (⟨𝑥, 𝐵⟩ ∈ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ↔ (⟨𝑥, 𝐵⟩ ∈ (V × V) ∧ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E ))))
2927, 28mpbiran 709 . . . . . 6 (⟨𝑥, 𝐵⟩ ∈ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ↔ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
3026, 29bitri 275 . . . . 5 (⟨𝑥, 𝐵⟩ ∈ SSet ↔ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
3124, 30bitri 275 . . . 4 (𝑥 SSet 𝐵 ↔ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
32 df-ss 3915 . . . 4 (𝑥𝐵 ↔ ∀𝑦(𝑦𝑥𝑦𝐵))
3323, 31, 323bitr4i 303 . . 3 (𝑥 SSet 𝐵𝑥𝐵)
345, 6, 33vtoclbg 3511 . 2 (𝐴 ∈ V → (𝐴 SSet 𝐵𝐴𝐵))
352, 4, 34pm5.21nii 378 1 (𝐴 SSet 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539  wex 1780  wcel 2113  Vcvv 3437  cdif 3895  wss 3898  cop 4583   class class class wbr 5095   E cep 5520   × cxp 5619  ran crn 5622  ctxp 35944   SSet csset 35946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-eprel 5521  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fo 6495  df-fv 6497  df-1st 7930  df-2nd 7931  df-txp 35968  df-sset 35970
This theorem is referenced by:  idsset  36004  dfon3  36006  imagesset  36069
  Copyright terms: Public domain W3C validator