Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsset Structured version   Visualization version   GIF version

Theorem brsset 35884
Description: For sets, the SSet binary relation is equivalent to the subset relationship. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypothesis
Ref Expression
brsset.1 𝐵 ∈ V
Assertion
Ref Expression
brsset (𝐴 SSet 𝐵𝐴𝐵)

Proof of Theorem brsset
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsset 35883 . . 3 Rel SSet
21brrelex1i 5697 . 2 (𝐴 SSet 𝐵𝐴 ∈ V)
3 brsset.1 . . 3 𝐵 ∈ V
43ssex 5279 . 2 (𝐴𝐵𝐴 ∈ V)
5 breq1 5113 . . 3 (𝑥 = 𝐴 → (𝑥 SSet 𝐵𝐴 SSet 𝐵))
6 sseq1 3975 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
7 opex 5427 . . . . . . 7 𝑥, 𝐵⟩ ∈ V
87elrn 5860 . . . . . 6 (⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )) ↔ ∃𝑦 𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩)
9 vex 3454 . . . . . . . . 9 𝑦 ∈ V
10 vex 3454 . . . . . . . . 9 𝑥 ∈ V
119, 10, 3brtxp 35875 . . . . . . . 8 (𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩ ↔ (𝑦 E 𝑥𝑦(V ∖ E )𝐵))
12 epel 5544 . . . . . . . . 9 (𝑦 E 𝑥𝑦𝑥)
13 brv 5435 . . . . . . . . . . 11 𝑦V𝐵
14 brdif 5163 . . . . . . . . . . 11 (𝑦(V ∖ E )𝐵 ↔ (𝑦V𝐵 ∧ ¬ 𝑦 E 𝐵))
1513, 14mpbiran 709 . . . . . . . . . 10 (𝑦(V ∖ E )𝐵 ↔ ¬ 𝑦 E 𝐵)
163epeli 5543 . . . . . . . . . 10 (𝑦 E 𝐵𝑦𝐵)
1715, 16xchbinx 334 . . . . . . . . 9 (𝑦(V ∖ E )𝐵 ↔ ¬ 𝑦𝐵)
1812, 17anbi12i 628 . . . . . . . 8 ((𝑦 E 𝑥𝑦(V ∖ E )𝐵) ↔ (𝑦𝑥 ∧ ¬ 𝑦𝐵))
1911, 18bitri 275 . . . . . . 7 (𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩ ↔ (𝑦𝑥 ∧ ¬ 𝑦𝐵))
2019exbii 1848 . . . . . 6 (∃𝑦 𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩ ↔ ∃𝑦(𝑦𝑥 ∧ ¬ 𝑦𝐵))
21 exanali 1859 . . . . . 6 (∃𝑦(𝑦𝑥 ∧ ¬ 𝑦𝐵) ↔ ¬ ∀𝑦(𝑦𝑥𝑦𝐵))
228, 20, 213bitrri 298 . . . . 5 (¬ ∀𝑦(𝑦𝑥𝑦𝐵) ↔ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
2322con1bii 356 . . . 4 (¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )) ↔ ∀𝑦(𝑦𝑥𝑦𝐵))
24 df-br 5111 . . . . 5 (𝑥 SSet 𝐵 ↔ ⟨𝑥, 𝐵⟩ ∈ SSet )
25 df-sset 35851 . . . . . . 7 SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
2625eleq2i 2821 . . . . . 6 (⟨𝑥, 𝐵⟩ ∈ SSet ↔ ⟨𝑥, 𝐵⟩ ∈ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))))
2710, 3opelvv 5681 . . . . . . 7 𝑥, 𝐵⟩ ∈ (V × V)
28 eldif 3927 . . . . . . 7 (⟨𝑥, 𝐵⟩ ∈ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ↔ (⟨𝑥, 𝐵⟩ ∈ (V × V) ∧ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E ))))
2927, 28mpbiran 709 . . . . . 6 (⟨𝑥, 𝐵⟩ ∈ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ↔ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
3026, 29bitri 275 . . . . 5 (⟨𝑥, 𝐵⟩ ∈ SSet ↔ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
3124, 30bitri 275 . . . 4 (𝑥 SSet 𝐵 ↔ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
32 df-ss 3934 . . . 4 (𝑥𝐵 ↔ ∀𝑦(𝑦𝑥𝑦𝐵))
3323, 31, 323bitr4i 303 . . 3 (𝑥 SSet 𝐵𝑥𝐵)
345, 6, 33vtoclbg 3526 . 2 (𝐴 ∈ V → (𝐴 SSet 𝐵𝐴𝐵))
352, 4, 34pm5.21nii 378 1 (𝐴 SSet 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538  wex 1779  wcel 2109  Vcvv 3450  cdif 3914  wss 3917  cop 4598   class class class wbr 5110   E cep 5540   × cxp 5639  ran crn 5642  ctxp 35825   SSet csset 35827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-1st 7971  df-2nd 7972  df-txp 35849  df-sset 35851
This theorem is referenced by:  idsset  35885  dfon3  35887  imagesset  35948
  Copyright terms: Public domain W3C validator