Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsset Structured version   Visualization version   GIF version

Theorem brsset 35929
Description: For sets, the SSet binary relation is equivalent to the subset relationship. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypothesis
Ref Expression
brsset.1 𝐵 ∈ V
Assertion
Ref Expression
brsset (𝐴 SSet 𝐵𝐴𝐵)

Proof of Theorem brsset
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsset 35928 . . 3 Rel SSet
21brrelex1i 5672 . 2 (𝐴 SSet 𝐵𝐴 ∈ V)
3 brsset.1 . . 3 𝐵 ∈ V
43ssex 5259 . 2 (𝐴𝐵𝐴 ∈ V)
5 breq1 5094 . . 3 (𝑥 = 𝐴 → (𝑥 SSet 𝐵𝐴 SSet 𝐵))
6 sseq1 3960 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
7 opex 5404 . . . . . . 7 𝑥, 𝐵⟩ ∈ V
87elrn 5833 . . . . . 6 (⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )) ↔ ∃𝑦 𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩)
9 vex 3440 . . . . . . . . 9 𝑦 ∈ V
10 vex 3440 . . . . . . . . 9 𝑥 ∈ V
119, 10, 3brtxp 35920 . . . . . . . 8 (𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩ ↔ (𝑦 E 𝑥𝑦(V ∖ E )𝐵))
12 epel 5519 . . . . . . . . 9 (𝑦 E 𝑥𝑦𝑥)
13 brv 5412 . . . . . . . . . . 11 𝑦V𝐵
14 brdif 5144 . . . . . . . . . . 11 (𝑦(V ∖ E )𝐵 ↔ (𝑦V𝐵 ∧ ¬ 𝑦 E 𝐵))
1513, 14mpbiran 709 . . . . . . . . . 10 (𝑦(V ∖ E )𝐵 ↔ ¬ 𝑦 E 𝐵)
163epeli 5518 . . . . . . . . . 10 (𝑦 E 𝐵𝑦𝐵)
1715, 16xchbinx 334 . . . . . . . . 9 (𝑦(V ∖ E )𝐵 ↔ ¬ 𝑦𝐵)
1812, 17anbi12i 628 . . . . . . . 8 ((𝑦 E 𝑥𝑦(V ∖ E )𝐵) ↔ (𝑦𝑥 ∧ ¬ 𝑦𝐵))
1911, 18bitri 275 . . . . . . 7 (𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩ ↔ (𝑦𝑥 ∧ ¬ 𝑦𝐵))
2019exbii 1849 . . . . . 6 (∃𝑦 𝑦( E ⊗ (V ∖ E ))⟨𝑥, 𝐵⟩ ↔ ∃𝑦(𝑦𝑥 ∧ ¬ 𝑦𝐵))
21 exanali 1860 . . . . . 6 (∃𝑦(𝑦𝑥 ∧ ¬ 𝑦𝐵) ↔ ¬ ∀𝑦(𝑦𝑥𝑦𝐵))
228, 20, 213bitrri 298 . . . . 5 (¬ ∀𝑦(𝑦𝑥𝑦𝐵) ↔ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
2322con1bii 356 . . . 4 (¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )) ↔ ∀𝑦(𝑦𝑥𝑦𝐵))
24 df-br 5092 . . . . 5 (𝑥 SSet 𝐵 ↔ ⟨𝑥, 𝐵⟩ ∈ SSet )
25 df-sset 35896 . . . . . . 7 SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
2625eleq2i 2823 . . . . . 6 (⟨𝑥, 𝐵⟩ ∈ SSet ↔ ⟨𝑥, 𝐵⟩ ∈ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))))
2710, 3opelvv 5656 . . . . . . 7 𝑥, 𝐵⟩ ∈ (V × V)
28 eldif 3912 . . . . . . 7 (⟨𝑥, 𝐵⟩ ∈ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ↔ (⟨𝑥, 𝐵⟩ ∈ (V × V) ∧ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E ))))
2927, 28mpbiran 709 . . . . . 6 (⟨𝑥, 𝐵⟩ ∈ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ↔ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
3026, 29bitri 275 . . . . 5 (⟨𝑥, 𝐵⟩ ∈ SSet ↔ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
3124, 30bitri 275 . . . 4 (𝑥 SSet 𝐵 ↔ ¬ ⟨𝑥, 𝐵⟩ ∈ ran ( E ⊗ (V ∖ E )))
32 df-ss 3919 . . . 4 (𝑥𝐵 ↔ ∀𝑦(𝑦𝑥𝑦𝐵))
3323, 31, 323bitr4i 303 . . 3 (𝑥 SSet 𝐵𝑥𝐵)
345, 6, 33vtoclbg 3512 . 2 (𝐴 ∈ V → (𝐴 SSet 𝐵𝐴𝐵))
352, 4, 34pm5.21nii 378 1 (𝐴 SSet 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539  wex 1780  wcel 2111  Vcvv 3436  cdif 3899  wss 3902  cop 4582   class class class wbr 5091   E cep 5515   × cxp 5614  ran crn 5617  ctxp 35870   SSet csset 35872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-eprel 5516  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-txp 35894  df-sset 35896
This theorem is referenced by:  idsset  35930  dfon3  35932  imagesset  35993
  Copyright terms: Public domain W3C validator