Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idsset Structured version   Visualization version   GIF version

Theorem idsset 34241
Description: I is equal to the intersection of SSet and its converse. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
idsset I = ( SSet SSet )

Proof of Theorem idsset
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 5748 . 2 Rel I
2 relsset 34239 . . 3 Rel SSet
3 relin1 5734 . . 3 (Rel SSet → Rel ( SSet SSet ))
42, 3ax-mp 5 . 2 Rel ( SSet SSet )
5 eqss 3941 . . 3 (𝑦 = 𝑧 ↔ (𝑦𝑧𝑧𝑦))
6 vex 3441 . . . 4 𝑧 ∈ V
76ideq 5774 . . 3 (𝑦 I 𝑧𝑦 = 𝑧)
8 brin 5133 . . . 4 (𝑦( SSet SSet )𝑧 ↔ (𝑦 SSet 𝑧𝑦 SSet 𝑧))
96brsset 34240 . . . . 5 (𝑦 SSet 𝑧𝑦𝑧)
10 vex 3441 . . . . . . 7 𝑦 ∈ V
1110, 6brcnv 5804 . . . . . 6 (𝑦 SSet 𝑧𝑧 SSet 𝑦)
1210brsset 34240 . . . . . 6 (𝑧 SSet 𝑦𝑧𝑦)
1311, 12bitri 275 . . . . 5 (𝑦 SSet 𝑧𝑧𝑦)
149, 13anbi12i 628 . . . 4 ((𝑦 SSet 𝑧𝑦 SSet 𝑧) ↔ (𝑦𝑧𝑧𝑦))
158, 14bitri 275 . . 3 (𝑦( SSet SSet )𝑧 ↔ (𝑦𝑧𝑧𝑦))
165, 7, 153bitr4i 303 . 2 (𝑦 I 𝑧𝑦( SSet SSet )𝑧)
171, 4, 16eqbrriv 5713 1 I = ( SSet SSet )
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1539  cin 3891  wss 3892   class class class wbr 5081   I cid 5499  ccnv 5599  Rel wrel 5605   SSet csset 34183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-eprel 5506  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fo 6464  df-fv 6466  df-1st 7863  df-2nd 7864  df-txp 34205  df-sset 34207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator