Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idsset | Structured version Visualization version GIF version |
Description: I is equal to the intersection of SSet and its converse. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
idsset | ⊢ I = ( SSet ∩ ◡ SSet ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5733 | . 2 ⊢ Rel I | |
2 | relsset 34169 | . . 3 ⊢ Rel SSet | |
3 | relin1 5719 | . . 3 ⊢ (Rel SSet → Rel ( SSet ∩ ◡ SSet )) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ Rel ( SSet ∩ ◡ SSet ) |
5 | eqss 3940 | . . 3 ⊢ (𝑦 = 𝑧 ↔ (𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦)) | |
6 | vex 3434 | . . . 4 ⊢ 𝑧 ∈ V | |
7 | 6 | ideq 5758 | . . 3 ⊢ (𝑦 I 𝑧 ↔ 𝑦 = 𝑧) |
8 | brin 5130 | . . . 4 ⊢ (𝑦( SSet ∩ ◡ SSet )𝑧 ↔ (𝑦 SSet 𝑧 ∧ 𝑦◡ SSet 𝑧)) | |
9 | 6 | brsset 34170 | . . . . 5 ⊢ (𝑦 SSet 𝑧 ↔ 𝑦 ⊆ 𝑧) |
10 | vex 3434 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
11 | 10, 6 | brcnv 5788 | . . . . . 6 ⊢ (𝑦◡ SSet 𝑧 ↔ 𝑧 SSet 𝑦) |
12 | 10 | brsset 34170 | . . . . . 6 ⊢ (𝑧 SSet 𝑦 ↔ 𝑧 ⊆ 𝑦) |
13 | 11, 12 | bitri 274 | . . . . 5 ⊢ (𝑦◡ SSet 𝑧 ↔ 𝑧 ⊆ 𝑦) |
14 | 9, 13 | anbi12i 626 | . . . 4 ⊢ ((𝑦 SSet 𝑧 ∧ 𝑦◡ SSet 𝑧) ↔ (𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦)) |
15 | 8, 14 | bitri 274 | . . 3 ⊢ (𝑦( SSet ∩ ◡ SSet )𝑧 ↔ (𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦)) |
16 | 5, 7, 15 | 3bitr4i 302 | . 2 ⊢ (𝑦 I 𝑧 ↔ 𝑦( SSet ∩ ◡ SSet )𝑧) |
17 | 1, 4, 16 | eqbrriv 5698 | 1 ⊢ I = ( SSet ∩ ◡ SSet ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1541 ∩ cin 3890 ⊆ wss 3891 class class class wbr 5078 I cid 5487 ◡ccnv 5587 Rel wrel 5593 SSet csset 34113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-eprel 5494 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fo 6436 df-fv 6438 df-1st 7817 df-2nd 7818 df-txp 34135 df-sset 34137 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |