![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idsset | Structured version Visualization version GIF version |
Description: I is equal to the intersection of SSet and its converse. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
idsset | ⊢ I = ( SSet ∩ ◡ SSet ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5826 | . 2 ⊢ Rel I | |
2 | relsset 35330 | . . 3 ⊢ Rel SSet | |
3 | relin1 5812 | . . 3 ⊢ (Rel SSet → Rel ( SSet ∩ ◡ SSet )) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ Rel ( SSet ∩ ◡ SSet ) |
5 | eqss 3997 | . . 3 ⊢ (𝑦 = 𝑧 ↔ (𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦)) | |
6 | vex 3477 | . . . 4 ⊢ 𝑧 ∈ V | |
7 | 6 | ideq 5852 | . . 3 ⊢ (𝑦 I 𝑧 ↔ 𝑦 = 𝑧) |
8 | brin 5200 | . . . 4 ⊢ (𝑦( SSet ∩ ◡ SSet )𝑧 ↔ (𝑦 SSet 𝑧 ∧ 𝑦◡ SSet 𝑧)) | |
9 | 6 | brsset 35331 | . . . . 5 ⊢ (𝑦 SSet 𝑧 ↔ 𝑦 ⊆ 𝑧) |
10 | vex 3477 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
11 | 10, 6 | brcnv 5882 | . . . . . 6 ⊢ (𝑦◡ SSet 𝑧 ↔ 𝑧 SSet 𝑦) |
12 | 10 | brsset 35331 | . . . . . 6 ⊢ (𝑧 SSet 𝑦 ↔ 𝑧 ⊆ 𝑦) |
13 | 11, 12 | bitri 275 | . . . . 5 ⊢ (𝑦◡ SSet 𝑧 ↔ 𝑧 ⊆ 𝑦) |
14 | 9, 13 | anbi12i 626 | . . . 4 ⊢ ((𝑦 SSet 𝑧 ∧ 𝑦◡ SSet 𝑧) ↔ (𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦)) |
15 | 8, 14 | bitri 275 | . . 3 ⊢ (𝑦( SSet ∩ ◡ SSet )𝑧 ↔ (𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦)) |
16 | 5, 7, 15 | 3bitr4i 303 | . 2 ⊢ (𝑦 I 𝑧 ↔ 𝑦( SSet ∩ ◡ SSet )𝑧) |
17 | 1, 4, 16 | eqbrriv 5791 | 1 ⊢ I = ( SSet ∩ ◡ SSet ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∩ cin 3947 ⊆ wss 3948 class class class wbr 5148 I cid 5573 ◡ccnv 5675 Rel wrel 5681 SSet csset 35274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7979 df-2nd 7980 df-txp 35296 df-sset 35298 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |