Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idsset Structured version   Visualization version   GIF version

Theorem idsset 35913
Description: I is equal to the intersection of SSet and its converse. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
idsset I = ( SSet SSet )

Proof of Theorem idsset
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 5810 . 2 Rel I
2 relsset 35911 . . 3 Rel SSet
3 relin1 5796 . . 3 (Rel SSet → Rel ( SSet SSet ))
42, 3ax-mp 5 . 2 Rel ( SSet SSet )
5 eqss 3979 . . 3 (𝑦 = 𝑧 ↔ (𝑦𝑧𝑧𝑦))
6 vex 3468 . . . 4 𝑧 ∈ V
76ideq 5837 . . 3 (𝑦 I 𝑧𝑦 = 𝑧)
8 brin 5176 . . . 4 (𝑦( SSet SSet )𝑧 ↔ (𝑦 SSet 𝑧𝑦 SSet 𝑧))
96brsset 35912 . . . . 5 (𝑦 SSet 𝑧𝑦𝑧)
10 vex 3468 . . . . . . 7 𝑦 ∈ V
1110, 6brcnv 5867 . . . . . 6 (𝑦 SSet 𝑧𝑧 SSet 𝑦)
1210brsset 35912 . . . . . 6 (𝑧 SSet 𝑦𝑧𝑦)
1311, 12bitri 275 . . . . 5 (𝑦 SSet 𝑧𝑧𝑦)
149, 13anbi12i 628 . . . 4 ((𝑦 SSet 𝑧𝑦 SSet 𝑧) ↔ (𝑦𝑧𝑧𝑦))
158, 14bitri 275 . . 3 (𝑦( SSet SSet )𝑧 ↔ (𝑦𝑧𝑧𝑦))
165, 7, 153bitr4i 303 . 2 (𝑦 I 𝑧𝑦( SSet SSet )𝑧)
171, 4, 16eqbrriv 5775 1 I = ( SSet SSet )
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  cin 3930  wss 3931   class class class wbr 5124   I cid 5552  ccnv 5658  Rel wrel 5664   SSet csset 35855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-eprel 5558  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-1st 7993  df-2nd 7994  df-txp 35877  df-sset 35879
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator