Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idsset Structured version   Visualization version   GIF version

Theorem idsset 34171
Description: I is equal to the intersection of SSet and its converse. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
idsset I = ( SSet SSet )

Proof of Theorem idsset
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 5733 . 2 Rel I
2 relsset 34169 . . 3 Rel SSet
3 relin1 5719 . . 3 (Rel SSet → Rel ( SSet SSet ))
42, 3ax-mp 5 . 2 Rel ( SSet SSet )
5 eqss 3940 . . 3 (𝑦 = 𝑧 ↔ (𝑦𝑧𝑧𝑦))
6 vex 3434 . . . 4 𝑧 ∈ V
76ideq 5758 . . 3 (𝑦 I 𝑧𝑦 = 𝑧)
8 brin 5130 . . . 4 (𝑦( SSet SSet )𝑧 ↔ (𝑦 SSet 𝑧𝑦 SSet 𝑧))
96brsset 34170 . . . . 5 (𝑦 SSet 𝑧𝑦𝑧)
10 vex 3434 . . . . . . 7 𝑦 ∈ V
1110, 6brcnv 5788 . . . . . 6 (𝑦 SSet 𝑧𝑧 SSet 𝑦)
1210brsset 34170 . . . . . 6 (𝑧 SSet 𝑦𝑧𝑦)
1311, 12bitri 274 . . . . 5 (𝑦 SSet 𝑧𝑧𝑦)
149, 13anbi12i 626 . . . 4 ((𝑦 SSet 𝑧𝑦 SSet 𝑧) ↔ (𝑦𝑧𝑧𝑦))
158, 14bitri 274 . . 3 (𝑦( SSet SSet )𝑧 ↔ (𝑦𝑧𝑧𝑦))
165, 7, 153bitr4i 302 . 2 (𝑦 I 𝑧𝑦( SSet SSet )𝑧)
171, 4, 16eqbrriv 5698 1 I = ( SSet SSet )
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  cin 3890  wss 3891   class class class wbr 5078   I cid 5487  ccnv 5587  Rel wrel 5593   SSet csset 34113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-eprel 5494  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fo 6436  df-fv 6438  df-1st 7817  df-2nd 7818  df-txp 34135  df-sset 34137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator