Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3b Structured version   Visualization version   GIF version

Theorem brpprod3b 35868
Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.)
Hypotheses
Ref Expression
brpprod3.1 𝑋 ∈ V
brpprod3.2 𝑌 ∈ V
brpprod3.3 𝑍 ∈ V
Assertion
Ref Expression
brpprod3b (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
Distinct variable groups:   𝑧,𝑤,𝑅   𝑤,𝑆,𝑧   𝑤,𝑋,𝑧   𝑤,𝑌,𝑧   𝑤,𝑍,𝑧

Proof of Theorem brpprod3b
StepHypRef Expression
1 pprodcnveq 35864 . . 3 pprod(𝑅, 𝑆) = pprod(𝑅, 𝑆)
21breqi 5108 . 2 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ 𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩)
3 brpprod3.1 . . . . 5 𝑋 ∈ V
4 opex 5419 . . . . 5 𝑌, 𝑍⟩ ∈ V
53, 4brcnv 5836 . . . 4 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩pprod(𝑅, 𝑆)𝑋)
6 brpprod3.2 . . . . 5 𝑌 ∈ V
7 brpprod3.3 . . . . 5 𝑍 ∈ V
86, 7, 3brpprod3a 35867 . . . 4 (⟨𝑌, 𝑍⟩pprod(𝑅, 𝑆)𝑋 ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤))
95, 8bitri 275 . . 3 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤))
10 biid 261 . . . . 5 (𝑋 = ⟨𝑧, 𝑤⟩ ↔ 𝑋 = ⟨𝑧, 𝑤⟩)
11 vex 3448 . . . . . 6 𝑧 ∈ V
126, 11brcnv 5836 . . . . 5 (𝑌𝑅𝑧𝑧𝑅𝑌)
13 vex 3448 . . . . . 6 𝑤 ∈ V
147, 13brcnv 5836 . . . . 5 (𝑍𝑆𝑤𝑤𝑆𝑍)
1510, 12, 143anbi123i 1155 . . . 4 ((𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤) ↔ (𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
16152exbii 1849 . . 3 (∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤) ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
179, 16bitri 275 . 2 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
182, 17bitri 275 1 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1540  wex 1779  wcel 2109  Vcvv 3444  cop 4591   class class class wbr 5102  ccnv 5630  pprodcpprod 35812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-1st 7947  df-2nd 7948  df-txp 35835  df-pprod 35836
This theorem is referenced by:  brcart  35913
  Copyright terms: Public domain W3C validator