Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3b Structured version   Visualization version   GIF version

Theorem brpprod3b 35826
Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.)
Hypotheses
Ref Expression
brpprod3.1 𝑋 ∈ V
brpprod3.2 𝑌 ∈ V
brpprod3.3 𝑍 ∈ V
Assertion
Ref Expression
brpprod3b (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
Distinct variable groups:   𝑧,𝑤,𝑅   𝑤,𝑆,𝑧   𝑤,𝑋,𝑧   𝑤,𝑌,𝑧   𝑤,𝑍,𝑧

Proof of Theorem brpprod3b
StepHypRef Expression
1 pprodcnveq 35822 . . 3 pprod(𝑅, 𝑆) = pprod(𝑅, 𝑆)
21breqi 5122 . 2 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ 𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩)
3 brpprod3.1 . . . . 5 𝑋 ∈ V
4 opex 5436 . . . . 5 𝑌, 𝑍⟩ ∈ V
53, 4brcnv 5859 . . . 4 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩pprod(𝑅, 𝑆)𝑋)
6 brpprod3.2 . . . . 5 𝑌 ∈ V
7 brpprod3.3 . . . . 5 𝑍 ∈ V
86, 7, 3brpprod3a 35825 . . . 4 (⟨𝑌, 𝑍⟩pprod(𝑅, 𝑆)𝑋 ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤))
95, 8bitri 275 . . 3 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤))
10 biid 261 . . . . 5 (𝑋 = ⟨𝑧, 𝑤⟩ ↔ 𝑋 = ⟨𝑧, 𝑤⟩)
11 vex 3461 . . . . . 6 𝑧 ∈ V
126, 11brcnv 5859 . . . . 5 (𝑌𝑅𝑧𝑧𝑅𝑌)
13 vex 3461 . . . . . 6 𝑤 ∈ V
147, 13brcnv 5859 . . . . 5 (𝑍𝑆𝑤𝑤𝑆𝑍)
1510, 12, 143anbi123i 1155 . . . 4 ((𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤) ↔ (𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
16152exbii 1848 . . 3 (∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤) ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
179, 16bitri 275 . 2 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
182, 17bitri 275 1 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1539  wex 1778  wcel 2107  Vcvv 3457  cop 4605   class class class wbr 5116  ccnv 5650  pprodcpprod 35770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-fo 6533  df-fv 6535  df-1st 7982  df-2nd 7983  df-txp 35793  df-pprod 35794
This theorem is referenced by:  brcart  35871
  Copyright terms: Public domain W3C validator