![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brpprod3b | Structured version Visualization version GIF version |
Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.) |
Ref | Expression |
---|---|
brpprod3.1 | ⊢ 𝑋 ∈ V |
brpprod3.2 | ⊢ 𝑌 ∈ V |
brpprod3.3 | ⊢ 𝑍 ∈ V |
Ref | Expression |
---|---|
brpprod3b | ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pprodcnveq 32503 | . . 3 ⊢ pprod(𝑅, 𝑆) = ◡pprod(◡𝑅, ◡𝑆) | |
2 | 1 | breqi 4849 | . 2 ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ 𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉) |
3 | brpprod3.1 | . . . . 5 ⊢ 𝑋 ∈ V | |
4 | opex 5123 | . . . . 5 ⊢ 〈𝑌, 𝑍〉 ∈ V | |
5 | 3, 4 | brcnv 5508 | . . . 4 ⊢ (𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉 ↔ 〈𝑌, 𝑍〉pprod(◡𝑅, ◡𝑆)𝑋) |
6 | brpprod3.2 | . . . . 5 ⊢ 𝑌 ∈ V | |
7 | brpprod3.3 | . . . . 5 ⊢ 𝑍 ∈ V | |
8 | 6, 7, 3 | brpprod3a 32506 | . . . 4 ⊢ (〈𝑌, 𝑍〉pprod(◡𝑅, ◡𝑆)𝑋 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤)) |
9 | 5, 8 | bitri 267 | . . 3 ⊢ (𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤)) |
10 | biid 253 | . . . . 5 ⊢ (𝑋 = 〈𝑧, 𝑤〉 ↔ 𝑋 = 〈𝑧, 𝑤〉) | |
11 | vex 3388 | . . . . . 6 ⊢ 𝑧 ∈ V | |
12 | 6, 11 | brcnv 5508 | . . . . 5 ⊢ (𝑌◡𝑅𝑧 ↔ 𝑧𝑅𝑌) |
13 | vex 3388 | . . . . . 6 ⊢ 𝑤 ∈ V | |
14 | 7, 13 | brcnv 5508 | . . . . 5 ⊢ (𝑍◡𝑆𝑤 ↔ 𝑤𝑆𝑍) |
15 | 10, 12, 14 | 3anbi123i 1195 | . . . 4 ⊢ ((𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤) ↔ (𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
16 | 15 | 2exbii 1945 | . . 3 ⊢ (∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤) ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
17 | 9, 16 | bitri 267 | . 2 ⊢ (𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
18 | 2, 17 | bitri 267 | 1 ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ w3a 1108 = wceq 1653 ∃wex 1875 ∈ wcel 2157 Vcvv 3385 〈cop 4374 class class class wbr 4843 ◡ccnv 5311 pprodcpprod 32451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fo 6107 df-fv 6109 df-1st 7401 df-2nd 7402 df-txp 32474 df-pprod 32475 |
This theorem is referenced by: brcart 32552 |
Copyright terms: Public domain | W3C validator |