| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brpprod3b | Structured version Visualization version GIF version | ||
| Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.) |
| Ref | Expression |
|---|---|
| brpprod3.1 | ⊢ 𝑋 ∈ V |
| brpprod3.2 | ⊢ 𝑌 ∈ V |
| brpprod3.3 | ⊢ 𝑍 ∈ V |
| Ref | Expression |
|---|---|
| brpprod3b | ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pprodcnveq 35878 | . . 3 ⊢ pprod(𝑅, 𝑆) = ◡pprod(◡𝑅, ◡𝑆) | |
| 2 | 1 | breqi 5116 | . 2 ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ 𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉) |
| 3 | brpprod3.1 | . . . . 5 ⊢ 𝑋 ∈ V | |
| 4 | opex 5427 | . . . . 5 ⊢ 〈𝑌, 𝑍〉 ∈ V | |
| 5 | 3, 4 | brcnv 5849 | . . . 4 ⊢ (𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉 ↔ 〈𝑌, 𝑍〉pprod(◡𝑅, ◡𝑆)𝑋) |
| 6 | brpprod3.2 | . . . . 5 ⊢ 𝑌 ∈ V | |
| 7 | brpprod3.3 | . . . . 5 ⊢ 𝑍 ∈ V | |
| 8 | 6, 7, 3 | brpprod3a 35881 | . . . 4 ⊢ (〈𝑌, 𝑍〉pprod(◡𝑅, ◡𝑆)𝑋 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤)) |
| 9 | 5, 8 | bitri 275 | . . 3 ⊢ (𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤)) |
| 10 | biid 261 | . . . . 5 ⊢ (𝑋 = 〈𝑧, 𝑤〉 ↔ 𝑋 = 〈𝑧, 𝑤〉) | |
| 11 | vex 3454 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 12 | 6, 11 | brcnv 5849 | . . . . 5 ⊢ (𝑌◡𝑅𝑧 ↔ 𝑧𝑅𝑌) |
| 13 | vex 3454 | . . . . . 6 ⊢ 𝑤 ∈ V | |
| 14 | 7, 13 | brcnv 5849 | . . . . 5 ⊢ (𝑍◡𝑆𝑤 ↔ 𝑤𝑆𝑍) |
| 15 | 10, 12, 14 | 3anbi123i 1155 | . . . 4 ⊢ ((𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤) ↔ (𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
| 16 | 15 | 2exbii 1849 | . . 3 ⊢ (∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤) ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
| 17 | 9, 16 | bitri 275 | . 2 ⊢ (𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
| 18 | 2, 17 | bitri 275 | 1 ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 〈cop 4598 class class class wbr 5110 ◡ccnv 5640 pprodcpprod 35826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-1st 7971 df-2nd 7972 df-txp 35849 df-pprod 35850 |
| This theorem is referenced by: brcart 35927 |
| Copyright terms: Public domain | W3C validator |