Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3b Structured version   Visualization version   GIF version

Theorem brpprod3b 35869
Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.)
Hypotheses
Ref Expression
brpprod3.1 𝑋 ∈ V
brpprod3.2 𝑌 ∈ V
brpprod3.3 𝑍 ∈ V
Assertion
Ref Expression
brpprod3b (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
Distinct variable groups:   𝑧,𝑤,𝑅   𝑤,𝑆,𝑧   𝑤,𝑋,𝑧   𝑤,𝑌,𝑧   𝑤,𝑍,𝑧

Proof of Theorem brpprod3b
StepHypRef Expression
1 pprodcnveq 35865 . . 3 pprod(𝑅, 𝑆) = pprod(𝑅, 𝑆)
21breqi 5154 . 2 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ 𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩)
3 brpprod3.1 . . . . 5 𝑋 ∈ V
4 opex 5475 . . . . 5 𝑌, 𝑍⟩ ∈ V
53, 4brcnv 5896 . . . 4 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩pprod(𝑅, 𝑆)𝑋)
6 brpprod3.2 . . . . 5 𝑌 ∈ V
7 brpprod3.3 . . . . 5 𝑍 ∈ V
86, 7, 3brpprod3a 35868 . . . 4 (⟨𝑌, 𝑍⟩pprod(𝑅, 𝑆)𝑋 ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤))
95, 8bitri 275 . . 3 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤))
10 biid 261 . . . . 5 (𝑋 = ⟨𝑧, 𝑤⟩ ↔ 𝑋 = ⟨𝑧, 𝑤⟩)
11 vex 3482 . . . . . 6 𝑧 ∈ V
126, 11brcnv 5896 . . . . 5 (𝑌𝑅𝑧𝑧𝑅𝑌)
13 vex 3482 . . . . . 6 𝑤 ∈ V
147, 13brcnv 5896 . . . . 5 (𝑍𝑆𝑤𝑤𝑆𝑍)
1510, 12, 143anbi123i 1154 . . . 4 ((𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤) ↔ (𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
16152exbii 1846 . . 3 (∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤) ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
179, 16bitri 275 . 2 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
182, 17bitri 275 1 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1537  wex 1776  wcel 2106  Vcvv 3478  cop 4637   class class class wbr 5148  ccnv 5688  pprodcpprod 35813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-1st 8013  df-2nd 8014  df-txp 35836  df-pprod 35837
This theorem is referenced by:  brcart  35914
  Copyright terms: Public domain W3C validator