| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brpprod3b | Structured version Visualization version GIF version | ||
| Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.) |
| Ref | Expression |
|---|---|
| brpprod3.1 | ⊢ 𝑋 ∈ V |
| brpprod3.2 | ⊢ 𝑌 ∈ V |
| brpprod3.3 | ⊢ 𝑍 ∈ V |
| Ref | Expression |
|---|---|
| brpprod3b | ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pprodcnveq 35925 | . . 3 ⊢ pprod(𝑅, 𝑆) = ◡pprod(◡𝑅, ◡𝑆) | |
| 2 | 1 | breqi 5095 | . 2 ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ 𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉) |
| 3 | brpprod3.1 | . . . . 5 ⊢ 𝑋 ∈ V | |
| 4 | opex 5402 | . . . . 5 ⊢ 〈𝑌, 𝑍〉 ∈ V | |
| 5 | 3, 4 | brcnv 5821 | . . . 4 ⊢ (𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉 ↔ 〈𝑌, 𝑍〉pprod(◡𝑅, ◡𝑆)𝑋) |
| 6 | brpprod3.2 | . . . . 5 ⊢ 𝑌 ∈ V | |
| 7 | brpprod3.3 | . . . . 5 ⊢ 𝑍 ∈ V | |
| 8 | 6, 7, 3 | brpprod3a 35928 | . . . 4 ⊢ (〈𝑌, 𝑍〉pprod(◡𝑅, ◡𝑆)𝑋 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤)) |
| 9 | 5, 8 | bitri 275 | . . 3 ⊢ (𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤)) |
| 10 | biid 261 | . . . . 5 ⊢ (𝑋 = 〈𝑧, 𝑤〉 ↔ 𝑋 = 〈𝑧, 𝑤〉) | |
| 11 | vex 3440 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 12 | 6, 11 | brcnv 5821 | . . . . 5 ⊢ (𝑌◡𝑅𝑧 ↔ 𝑧𝑅𝑌) |
| 13 | vex 3440 | . . . . . 6 ⊢ 𝑤 ∈ V | |
| 14 | 7, 13 | brcnv 5821 | . . . . 5 ⊢ (𝑍◡𝑆𝑤 ↔ 𝑤𝑆𝑍) |
| 15 | 10, 12, 14 | 3anbi123i 1155 | . . . 4 ⊢ ((𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤) ↔ (𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
| 16 | 15 | 2exbii 1850 | . . 3 ⊢ (∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤) ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
| 17 | 9, 16 | bitri 275 | . 2 ⊢ (𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
| 18 | 2, 17 | bitri 275 | 1 ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 〈cop 4579 class class class wbr 5089 ◡ccnv 5613 pprodcpprod 35873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-txp 35896 df-pprod 35897 |
| This theorem is referenced by: brcart 35974 |
| Copyright terms: Public domain | W3C validator |