Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3b Structured version   Visualization version   GIF version

Theorem brpprod3b 34847
Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.)
Hypotheses
Ref Expression
brpprod3.1 𝑋 ∈ V
brpprod3.2 π‘Œ ∈ V
brpprod3.3 𝑍 ∈ V
Assertion
Ref Expression
brpprod3b (𝑋pprod(𝑅, 𝑆)βŸ¨π‘Œ, π‘βŸ© ↔ βˆƒπ‘§βˆƒπ‘€(𝑋 = βŸ¨π‘§, π‘€βŸ© ∧ π‘§π‘…π‘Œ ∧ 𝑀𝑆𝑍))
Distinct variable groups:   𝑧,𝑀,𝑅   𝑀,𝑆,𝑧   𝑀,𝑋,𝑧   𝑀,π‘Œ,𝑧   𝑀,𝑍,𝑧

Proof of Theorem brpprod3b
StepHypRef Expression
1 pprodcnveq 34843 . . 3 pprod(𝑅, 𝑆) = β—‘pprod(◑𝑅, ◑𝑆)
21breqi 5153 . 2 (𝑋pprod(𝑅, 𝑆)βŸ¨π‘Œ, π‘βŸ© ↔ 𝑋◑pprod(◑𝑅, ◑𝑆)βŸ¨π‘Œ, π‘βŸ©)
3 brpprod3.1 . . . . 5 𝑋 ∈ V
4 opex 5463 . . . . 5 βŸ¨π‘Œ, π‘βŸ© ∈ V
53, 4brcnv 5880 . . . 4 (𝑋◑pprod(◑𝑅, ◑𝑆)βŸ¨π‘Œ, π‘βŸ© ↔ βŸ¨π‘Œ, π‘βŸ©pprod(◑𝑅, ◑𝑆)𝑋)
6 brpprod3.2 . . . . 5 π‘Œ ∈ V
7 brpprod3.3 . . . . 5 𝑍 ∈ V
86, 7, 3brpprod3a 34846 . . . 4 (βŸ¨π‘Œ, π‘βŸ©pprod(◑𝑅, ◑𝑆)𝑋 ↔ βˆƒπ‘§βˆƒπ‘€(𝑋 = βŸ¨π‘§, π‘€βŸ© ∧ π‘Œβ—‘π‘…π‘§ ∧ 𝑍◑𝑆𝑀))
95, 8bitri 274 . . 3 (𝑋◑pprod(◑𝑅, ◑𝑆)βŸ¨π‘Œ, π‘βŸ© ↔ βˆƒπ‘§βˆƒπ‘€(𝑋 = βŸ¨π‘§, π‘€βŸ© ∧ π‘Œβ—‘π‘…π‘§ ∧ 𝑍◑𝑆𝑀))
10 biid 260 . . . . 5 (𝑋 = βŸ¨π‘§, π‘€βŸ© ↔ 𝑋 = βŸ¨π‘§, π‘€βŸ©)
11 vex 3478 . . . . . 6 𝑧 ∈ V
126, 11brcnv 5880 . . . . 5 (π‘Œβ—‘π‘…π‘§ ↔ π‘§π‘…π‘Œ)
13 vex 3478 . . . . . 6 𝑀 ∈ V
147, 13brcnv 5880 . . . . 5 (𝑍◑𝑆𝑀 ↔ 𝑀𝑆𝑍)
1510, 12, 143anbi123i 1155 . . . 4 ((𝑋 = βŸ¨π‘§, π‘€βŸ© ∧ π‘Œβ—‘π‘…π‘§ ∧ 𝑍◑𝑆𝑀) ↔ (𝑋 = βŸ¨π‘§, π‘€βŸ© ∧ π‘§π‘…π‘Œ ∧ 𝑀𝑆𝑍))
16152exbii 1851 . . 3 (βˆƒπ‘§βˆƒπ‘€(𝑋 = βŸ¨π‘§, π‘€βŸ© ∧ π‘Œβ—‘π‘…π‘§ ∧ 𝑍◑𝑆𝑀) ↔ βˆƒπ‘§βˆƒπ‘€(𝑋 = βŸ¨π‘§, π‘€βŸ© ∧ π‘§π‘…π‘Œ ∧ 𝑀𝑆𝑍))
179, 16bitri 274 . 2 (𝑋◑pprod(◑𝑅, ◑𝑆)βŸ¨π‘Œ, π‘βŸ© ↔ βˆƒπ‘§βˆƒπ‘€(𝑋 = βŸ¨π‘§, π‘€βŸ© ∧ π‘§π‘…π‘Œ ∧ 𝑀𝑆𝑍))
182, 17bitri 274 1 (𝑋pprod(𝑅, 𝑆)βŸ¨π‘Œ, π‘βŸ© ↔ βˆƒπ‘§βˆƒπ‘€(𝑋 = βŸ¨π‘§, π‘€βŸ© ∧ π‘§π‘…π‘Œ ∧ 𝑀𝑆𝑍))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  Vcvv 3474  βŸ¨cop 4633   class class class wbr 5147  β—‘ccnv 5674  pprodcpprod 34791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-1st 7971  df-2nd 7972  df-txp 34814  df-pprod 34815
This theorem is referenced by:  brcart  34892
  Copyright terms: Public domain W3C validator