Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3b Structured version   Visualization version   GIF version

Theorem brpprod3b 34116
Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.)
Hypotheses
Ref Expression
brpprod3.1 𝑋 ∈ V
brpprod3.2 𝑌 ∈ V
brpprod3.3 𝑍 ∈ V
Assertion
Ref Expression
brpprod3b (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
Distinct variable groups:   𝑧,𝑤,𝑅   𝑤,𝑆,𝑧   𝑤,𝑋,𝑧   𝑤,𝑌,𝑧   𝑤,𝑍,𝑧

Proof of Theorem brpprod3b
StepHypRef Expression
1 pprodcnveq 34112 . . 3 pprod(𝑅, 𝑆) = pprod(𝑅, 𝑆)
21breqi 5076 . 2 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ 𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩)
3 brpprod3.1 . . . . 5 𝑋 ∈ V
4 opex 5373 . . . . 5 𝑌, 𝑍⟩ ∈ V
53, 4brcnv 5780 . . . 4 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ⟨𝑌, 𝑍⟩pprod(𝑅, 𝑆)𝑋)
6 brpprod3.2 . . . . 5 𝑌 ∈ V
7 brpprod3.3 . . . . 5 𝑍 ∈ V
86, 7, 3brpprod3a 34115 . . . 4 (⟨𝑌, 𝑍⟩pprod(𝑅, 𝑆)𝑋 ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤))
95, 8bitri 274 . . 3 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤))
10 biid 260 . . . . 5 (𝑋 = ⟨𝑧, 𝑤⟩ ↔ 𝑋 = ⟨𝑧, 𝑤⟩)
11 vex 3426 . . . . . 6 𝑧 ∈ V
126, 11brcnv 5780 . . . . 5 (𝑌𝑅𝑧𝑧𝑅𝑌)
13 vex 3426 . . . . . 6 𝑤 ∈ V
147, 13brcnv 5780 . . . . 5 (𝑍𝑆𝑤𝑤𝑆𝑍)
1510, 12, 143anbi123i 1153 . . . 4 ((𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤) ↔ (𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
16152exbii 1852 . . 3 (∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑌𝑅𝑧𝑍𝑆𝑤) ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
179, 16bitri 274 . 2 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
182, 17bitri 274 1 (𝑋pprod(𝑅, 𝑆)⟨𝑌, 𝑍⟩ ↔ ∃𝑧𝑤(𝑋 = ⟨𝑧, 𝑤⟩ ∧ 𝑧𝑅𝑌𝑤𝑆𝑍))
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1085   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  cop 4564   class class class wbr 5070  ccnv 5579  pprodcpprod 34060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-txp 34083  df-pprod 34084
This theorem is referenced by:  brcart  34161
  Copyright terms: Public domain W3C validator