Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brpprod3b | Structured version Visualization version GIF version |
Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.) |
Ref | Expression |
---|---|
brpprod3.1 | ⊢ 𝑋 ∈ V |
brpprod3.2 | ⊢ 𝑌 ∈ V |
brpprod3.3 | ⊢ 𝑍 ∈ V |
Ref | Expression |
---|---|
brpprod3b | ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pprodcnveq 33768 | . . 3 ⊢ pprod(𝑅, 𝑆) = ◡pprod(◡𝑅, ◡𝑆) | |
2 | 1 | breqi 5042 | . 2 ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ 𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉) |
3 | brpprod3.1 | . . . . 5 ⊢ 𝑋 ∈ V | |
4 | opex 5328 | . . . . 5 ⊢ 〈𝑌, 𝑍〉 ∈ V | |
5 | 3, 4 | brcnv 5728 | . . . 4 ⊢ (𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉 ↔ 〈𝑌, 𝑍〉pprod(◡𝑅, ◡𝑆)𝑋) |
6 | brpprod3.2 | . . . . 5 ⊢ 𝑌 ∈ V | |
7 | brpprod3.3 | . . . . 5 ⊢ 𝑍 ∈ V | |
8 | 6, 7, 3 | brpprod3a 33771 | . . . 4 ⊢ (〈𝑌, 𝑍〉pprod(◡𝑅, ◡𝑆)𝑋 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤)) |
9 | 5, 8 | bitri 278 | . . 3 ⊢ (𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤)) |
10 | biid 264 | . . . . 5 ⊢ (𝑋 = 〈𝑧, 𝑤〉 ↔ 𝑋 = 〈𝑧, 𝑤〉) | |
11 | vex 3413 | . . . . . 6 ⊢ 𝑧 ∈ V | |
12 | 6, 11 | brcnv 5728 | . . . . 5 ⊢ (𝑌◡𝑅𝑧 ↔ 𝑧𝑅𝑌) |
13 | vex 3413 | . . . . . 6 ⊢ 𝑤 ∈ V | |
14 | 7, 13 | brcnv 5728 | . . . . 5 ⊢ (𝑍◡𝑆𝑤 ↔ 𝑤𝑆𝑍) |
15 | 10, 12, 14 | 3anbi123i 1152 | . . . 4 ⊢ ((𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤) ↔ (𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
16 | 15 | 2exbii 1850 | . . 3 ⊢ (∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑌◡𝑅𝑧 ∧ 𝑍◡𝑆𝑤) ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
17 | 9, 16 | bitri 278 | . 2 ⊢ (𝑋◡pprod(◡𝑅, ◡𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
18 | 2, 17 | bitri 278 | 1 ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ w3a 1084 = wceq 1538 ∃wex 1781 ∈ wcel 2111 Vcvv 3409 〈cop 4531 class class class wbr 5036 ◡ccnv 5527 pprodcpprod 33716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fo 6346 df-fv 6348 df-1st 7699 df-2nd 7700 df-txp 33739 df-pprod 33740 |
This theorem is referenced by: brcart 33817 |
Copyright terms: Public domain | W3C validator |