| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgrv | Structured version Visualization version GIF version | ||
| Description: If a class is a subgraph of another class, both classes are sets. (Contributed by AV, 16-Nov-2020.) |
| Ref | Expression |
|---|---|
| subgrv | ⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsubgr 29248 | . 2 ⊢ Rel SubGraph | |
| 2 | 1 | brrelex12i 5671 | 1 ⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 SubGraph csubgr 29246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-subgr 29247 |
| This theorem is referenced by: subgrprop 29252 subgrprop3 29255 subuhgr 29265 subupgr 29266 subumgr 29267 subusgr 29268 subgrwlk 35174 acycgrsubgr 35200 |
| Copyright terms: Public domain | W3C validator |