| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgrv | Structured version Visualization version GIF version | ||
| Description: If a class is a subgraph of another class, both classes are sets. (Contributed by AV, 16-Nov-2020.) |
| Ref | Expression |
|---|---|
| subgrv | ⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsubgr 29253 | . 2 ⊢ Rel SubGraph | |
| 2 | 1 | brrelex12i 5714 | 1 ⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 SubGraph csubgr 29251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-subgr 29252 |
| This theorem is referenced by: subgrprop 29257 subgrprop3 29260 subuhgr 29270 subupgr 29271 subumgr 29272 subusgr 29273 subgrwlk 35159 acycgrsubgr 35185 |
| Copyright terms: Public domain | W3C validator |