Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgrv | Structured version Visualization version GIF version |
Description: If a class is a subgraph of another class, both classes are sets. (Contributed by AV, 16-Nov-2020.) |
Ref | Expression |
---|---|
subgrv | ⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsubgr 27925 | . 2 ⊢ Rel SubGraph | |
2 | 1 | brrelex12i 5673 | 1 ⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 Vcvv 3441 class class class wbr 5092 SubGraph csubgr 27923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-xp 5626 df-rel 5627 df-subgr 27924 |
This theorem is referenced by: subgrprop 27929 subgrprop3 27932 subuhgr 27942 subupgr 27943 subumgr 27944 subusgr 27945 subgrwlk 33393 acycgrsubgr 33419 |
Copyright terms: Public domain | W3C validator |