| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgrv | Structured version Visualization version GIF version | ||
| Description: If a class is a subgraph of another class, both classes are sets. (Contributed by AV, 16-Nov-2020.) |
| Ref | Expression |
|---|---|
| subgrv | ⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsubgr 29232 | . 2 ⊢ Rel SubGraph | |
| 2 | 1 | brrelex12i 5678 | 1 ⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 SubGraph csubgr 29230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-subgr 29231 |
| This theorem is referenced by: subgrprop 29236 subgrprop3 29239 subuhgr 29249 subupgr 29250 subumgr 29251 subusgr 29252 subgrwlk 35107 acycgrsubgr 35133 |
| Copyright terms: Public domain | W3C validator |