MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgrv Structured version   Visualization version   GIF version

Theorem subgrv 29254
Description: If a class is a subgraph of another class, both classes are sets. (Contributed by AV, 16-Nov-2020.)
Assertion
Ref Expression
subgrv (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))

Proof of Theorem subgrv
StepHypRef Expression
1 relsubgr 29253 . 2 Rel SubGraph
21brrelex12i 5714 1 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3464   class class class wbr 5124   SubGraph csubgr 29251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-subgr 29252
This theorem is referenced by:  subgrprop  29257  subgrprop3  29260  subuhgr  29270  subupgr  29271  subumgr  29272  subusgr  29273  subgrwlk  35159  acycgrsubgr  35185
  Copyright terms: Public domain W3C validator