MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgrv Structured version   Visualization version   GIF version

Theorem subgrv 29250
Description: If a class is a subgraph of another class, both classes are sets. (Contributed by AV, 16-Nov-2020.)
Assertion
Ref Expression
subgrv (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))

Proof of Theorem subgrv
StepHypRef Expression
1 relsubgr 29249 . 2 Rel SubGraph
21brrelex12i 5674 1 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  Vcvv 3437   class class class wbr 5093   SubGraph csubgr 29247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-subgr 29248
This theorem is referenced by:  subgrprop  29253  subgrprop3  29256  subuhgr  29266  subupgr  29267  subumgr  29268  subusgr  29269  subgrwlk  35197  acycgrsubgr  35223
  Copyright terms: Public domain W3C validator