![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgrv | Structured version Visualization version GIF version |
Description: If a class is a subgraph of another class, both classes are sets. (Contributed by AV, 16-Nov-2020.) |
Ref | Expression |
---|---|
subgrv | ⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsubgr 26744 | . 2 ⊢ Rel SubGraph | |
2 | 1 | brrelex12i 5450 | 1 ⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2048 Vcvv 3409 class class class wbr 4923 SubGraph csubgr 26742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4924 df-opab 4986 df-xp 5406 df-rel 5407 df-subgr 26743 |
This theorem is referenced by: subgrprop 26748 subgrprop3 26751 subuhgr 26761 subupgr 26762 subumgr 26763 subusgr 26764 |
Copyright terms: Public domain | W3C validator |