MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgrv Structured version   Visualization version   GIF version

Theorem subgrv 28960
Description: If a class is a subgraph of another class, both classes are sets. (Contributed by AV, 16-Nov-2020.)
Assertion
Ref Expression
subgrv (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))

Proof of Theorem subgrv
StepHypRef Expression
1 relsubgr 28959 . 2 Rel SubGraph
21brrelex12i 5731 1 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  Vcvv 3473   class class class wbr 5148   SubGraph csubgr 28957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-subgr 28958
This theorem is referenced by:  subgrprop  28963  subgrprop3  28966  subuhgr  28976  subupgr  28977  subumgr  28978  subusgr  28979  subgrwlk  34587  acycgrsubgr  34613
  Copyright terms: Public domain W3C validator