| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexabsobidv | Structured version Visualization version GIF version | ||
| Description: Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| ralabsod.1 | ⊢ (𝜑 → Tr 𝑀) |
| ralabsobidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexabsobidv | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralabsobidv.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | rexbidv 3162 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| 4 | ralabsod.1 | . . 3 ⊢ (𝜑 → Tr 𝑀) | |
| 5 | 4 | rexabsod 44923 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜒 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 6 | 3, 5 | bitrd 279 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∃wrex 3059 Tr wtr 5226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-v 3459 df-ss 3941 df-uni 4881 df-tr 5227 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |