Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexabsobidv Structured version   Visualization version   GIF version

Theorem rexabsobidv 44956
Description: Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025.)
Hypotheses
Ref Expression
ralabsod.1 (𝜑 → Tr 𝑀)
ralabsobidv.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rexabsobidv ((𝜑𝐴𝑀) → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝑀 (𝑥𝐴𝜒)))
Distinct variable groups:   𝑥,𝑀   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem rexabsobidv
StepHypRef Expression
1 ralabsobidv.2 . . . 4 (𝜑 → (𝜓𝜒))
21rexbidv 3158 . . 3 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))
32adantr 480 . 2 ((𝜑𝐴𝑀) → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))
4 ralabsod.1 . . 3 (𝜑 → Tr 𝑀)
54rexabsod 44954 . 2 ((𝜑𝐴𝑀) → (∃𝑥𝐴 𝜒 ↔ ∃𝑥𝑀 (𝑥𝐴𝜒)))
63, 5bitrd 279 1 ((𝜑𝐴𝑀) → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝑀 (𝑥𝐴𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wrex 3054  Tr wtr 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-ss 3933  df-uni 4874  df-tr 5217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator