| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ralabsobidv | Structured version Visualization version GIF version | ||
| Description: Formula-building lemma for proving absoluteness results. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| ralabsod.1 | ⊢ (𝜑 → Tr 𝑀) |
| ralabsobidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralabsobidv | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralabsobidv.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3177 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| 4 | ralabsod.1 | . . 3 ⊢ (𝜑 → Tr 𝑀) | |
| 5 | 4 | ralabsod 44960 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜒))) |
| 6 | 3, 5 | bitrd 279 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3060 Tr wtr 5257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-v 3481 df-ss 3967 df-uni 4906 df-tr 5258 |
| This theorem is referenced by: modelac8prim 44982 |
| Copyright terms: Public domain | W3C validator |