Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssabso Structured version   Visualization version   GIF version

Theorem ssabso 44964
Description: The notion "𝑥 is a subset of 𝑦 " is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.)
Assertion
Ref Expression
ssabso ((Tr 𝑀𝐴𝑀) → (𝐴𝐵 ↔ ∀𝑥𝑀 (𝑥𝐴𝑥𝐵)))
Distinct variable groups:   𝑥,𝑀   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssabso
StepHypRef Expression
1 dfss3 3971 . 2 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
2 ralabso 44958 . 2 ((Tr 𝑀𝐴𝑀) → (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥𝑀 (𝑥𝐴𝑥𝐵)))
31, 2bitrid 283 1 ((Tr 𝑀𝐴𝑀) → (𝐴𝐵 ↔ ∀𝑥𝑀 (𝑥𝐴𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3060  wss 3950  Tr wtr 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-v 3481  df-ss 3967  df-uni 4906  df-tr 5258
This theorem is referenced by:  pwclaxpow  44974
  Copyright terms: Public domain W3C validator