| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssabso | Structured version Visualization version GIF version | ||
| Description: The notion "𝑥 is a subset of 𝑦 " is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| ssabso | ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 3937 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | |
| 2 | ralabso 44951 | . 2 ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) | |
| 3 | 1, 2 | bitrid 283 | 1 ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3916 Tr wtr 5216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-ss 3933 df-uni 4874 df-tr 5217 |
| This theorem is referenced by: pwclaxpow 44967 |
| Copyright terms: Public domain | W3C validator |