| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexabsod | Structured version Visualization version GIF version | ||
| Description: Deduction form of rexabso 45126. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| ralabsod.1 | ⊢ (𝜑 → Tr 𝑀) |
| Ref | Expression |
|---|---|
| rexabsod | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralabsod.1 | . 2 ⊢ (𝜑 → Tr 𝑀) | |
| 2 | rexabso 45126 | . 2 ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∃wrex 3057 Tr wtr 5202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-v 3439 df-ss 3915 df-uni 4861 df-tr 5203 |
| This theorem is referenced by: rexabsobidv 45130 |
| Copyright terms: Public domain | W3C validator |