![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexcom4f | Structured version Visualization version GIF version |
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.) |
Ref | Expression |
---|---|
ralcom4f.1 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
rexcom4f | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom4f.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑥V | |
3 | 1, 2 | rexcomf 3300 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∃𝑦 ∈ V ∃𝑥 ∈ 𝐴 𝜑) |
4 | rexv 3499 | . . 3 ⊢ (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑) | |
5 | 4 | rexbii 3094 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦𝜑) |
6 | rexv 3499 | . 2 ⊢ (∃𝑦 ∈ V ∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | |
7 | 3, 5, 6 | 3bitr3i 300 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1781 Ⅎwnfc 2883 ∃wrex 3070 Vcvv 3474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-v 3476 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |