Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexcom4f Structured version   Visualization version   GIF version

Theorem rexcom4f 29906
 Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.)
Hypothesis
Ref Expression
ralcom4f.1 𝑦𝐴
Assertion
Ref Expression
rexcom4f (∃𝑥𝐴𝑦𝜑 ↔ ∃𝑦𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem rexcom4f
StepHypRef Expression
1 ralcom4f.1 . . 3 𝑦𝐴
2 nfcv 2934 . . 3 𝑥V
31, 2rexcomf 3283 . 2 (∃𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∃𝑦 ∈ V ∃𝑥𝐴 𝜑)
4 rexv 3422 . . 3 (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑)
54rexbii 3224 . 2 (∃𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∃𝑥𝐴𝑦𝜑)
6 rexv 3422 . 2 (∃𝑦 ∈ V ∃𝑥𝐴 𝜑 ↔ ∃𝑦𝑥𝐴 𝜑)
73, 5, 63bitr3i 293 1 (∃𝑥𝐴𝑦𝜑 ↔ ∃𝑦𝑥𝐴 𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198  ∃wex 1823  Ⅎwnfc 2919  ∃wrex 3091  Vcvv 3398 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-v 3400 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator