MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexeqtrrdv Structured version   Visualization version   GIF version

Theorem rexeqtrrdv 3329
Description: Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
Hypotheses
Ref Expression
rexeqtrrdv.1 (𝜑 → ∃𝑥𝐴 𝜓)
rexeqtrrdv.2 (𝜑𝐵 = 𝐴)
Assertion
Ref Expression
rexeqtrrdv (𝜑 → ∃𝑥𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rexeqtrrdv
StepHypRef Expression
1 rexeqtrrdv.1 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
2 rexeqtrrdv.2 . . 3 (𝜑𝐵 = 𝐴)
32rexeqdv 3325 . 2 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑥𝐴 𝜓))
41, 3mpbird 257 1 (𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wrex 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-cleq 2727  df-rex 3069
This theorem is referenced by:  zornn0g  10543  ablfacrplem  20100  ablfac2  20124  2ndcctbss  23479  1stcelcls  23485  wwlksnextsurj  29930  primrootsunit1  42079
  Copyright terms: Public domain W3C validator