![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeqtrrdv | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
Ref | Expression |
---|---|
rexeqtrrdv.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
rexeqtrrdv.2 | ⊢ (𝜑 → 𝐵 = 𝐴) |
Ref | Expression |
---|---|
rexeqtrrdv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeqtrrdv.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
2 | rexeqtrrdv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
3 | 2 | rexeqdv 3335 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
4 | 1, 3 | mpbird 257 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-rex 3077 |
This theorem is referenced by: zornn0g 10574 ablfacrplem 20109 ablfac2 20133 2ndcctbss 23484 1stcelcls 23490 wwlksnextsurj 29933 primrootsunit1 42054 |
Copyright terms: Public domain | W3C validator |