| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqtrrdv | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| rexeqtrrdv.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| rexeqtrrdv.2 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| Ref | Expression |
|---|---|
| rexeqtrrdv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeqtrrdv.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 2 | rexeqtrrdv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 3 | 2 | rexeqdv 3310 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
| 4 | 1, 3 | mpbird 257 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-rex 3062 |
| This theorem is referenced by: zornn0g 10524 ablfacrplem 20053 ablfac2 20077 2ndcctbss 23398 1stcelcls 23404 wwlksnextsurj 29887 primrootsunit1 42115 |
| Copyright terms: Public domain | W3C validator |