Step | Hyp | Ref
| Expression |
1 | | primrootsunit1.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑅 ∈ CMnd) |
2 | 1 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → 𝑅 ∈ CMnd) |
3 | | primrootsunit1.2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈ ℕ) |
4 | 3 | nnnn0d 12613 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
5 | 4 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → 𝐾 ∈
ℕ0) |
6 | | eqid 2740 |
. . . . . . . . . . . . . . 15
⊢
(.g‘𝑅) = (.g‘𝑅) |
7 | 2, 5, 6 | isprimroot 42050 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (𝑐 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑐 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑐) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑐) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
8 | 7 | biimpd 229 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (𝑐 ∈ (𝑅 PrimRoots 𝐾) → (𝑐 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑐) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑐) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
9 | 8 | syldbl2 840 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (𝑐 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑐) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑐) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
10 | 9 | simp1d 1142 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → 𝑐 ∈ (Base‘𝑅)) |
11 | 1 | cmnmndd 19846 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ Mnd) |
12 | 11 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → 𝑅 ∈ Mnd) |
13 | | nnm1nn0 12594 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ ℕ → (𝐾 − 1) ∈
ℕ0) |
14 | 3, 13 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐾 − 1) ∈
ℕ0) |
15 | 14 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (𝐾 − 1) ∈
ℕ0) |
16 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑅) =
(Base‘𝑅) |
17 | 16, 6 | mulgnn0cl 19130 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Mnd ∧ (𝐾 − 1) ∈
ℕ0 ∧ 𝑐
∈ (Base‘𝑅))
→ ((𝐾 −
1)(.g‘𝑅)𝑐) ∈ (Base‘𝑅)) |
18 | 12, 15, 10, 17 | syl3anc 1371 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐾 − 1)(.g‘𝑅)𝑐) ∈ (Base‘𝑅)) |
19 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑖 = ((𝐾 − 1)(.g‘𝑅)𝑐)) → 𝑖 = ((𝐾 − 1)(.g‘𝑅)𝑐)) |
20 | 19 | oveq1d 7463 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑖 = ((𝐾 − 1)(.g‘𝑅)𝑐)) → (𝑖(+g‘𝑅)𝑐) = (((𝐾 − 1)(.g‘𝑅)𝑐)(+g‘𝑅)𝑐)) |
21 | 20 | eqeq1d 2742 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑖 = ((𝐾 − 1)(.g‘𝑅)𝑐)) → ((𝑖(+g‘𝑅)𝑐) = (0g‘𝑅) ↔ (((𝐾 − 1)(.g‘𝑅)𝑐)(+g‘𝑅)𝑐) = (0g‘𝑅))) |
22 | 3 | nncnd 12309 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐾 ∈ ℂ) |
23 | | 1cnd 11285 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 ∈
ℂ) |
24 | 22, 23 | npcand 11651 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐾 − 1) + 1) = 𝐾) |
25 | 24 | eqcomd 2746 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 = ((𝐾 − 1) + 1)) |
26 | 25 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → 𝐾 = ((𝐾 − 1) + 1)) |
27 | 26 | oveq1d 7463 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (𝐾(.g‘𝑅)𝑐) = (((𝐾 − 1) + 1)(.g‘𝑅)𝑐)) |
28 | | eqid 2740 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝑅) = (+g‘𝑅) |
29 | 16, 6, 28 | mulgnn0p1 19125 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Mnd ∧ (𝐾 − 1) ∈
ℕ0 ∧ 𝑐
∈ (Base‘𝑅))
→ (((𝐾 − 1) +
1)(.g‘𝑅)𝑐) = (((𝐾 − 1)(.g‘𝑅)𝑐)(+g‘𝑅)𝑐)) |
30 | 12, 15, 10, 29 | syl3anc 1371 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (((𝐾 − 1) + 1)(.g‘𝑅)𝑐) = (((𝐾 − 1)(.g‘𝑅)𝑐)(+g‘𝑅)𝑐)) |
31 | 27, 30 | eqtr2d 2781 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (((𝐾 − 1)(.g‘𝑅)𝑐)(+g‘𝑅)𝑐) = (𝐾(.g‘𝑅)𝑐)) |
32 | 9 | simp2d 1143 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (𝐾(.g‘𝑅)𝑐) = (0g‘𝑅)) |
33 | 31, 32 | eqtrd 2780 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (((𝐾 − 1)(.g‘𝑅)𝑐)(+g‘𝑅)𝑐) = (0g‘𝑅)) |
34 | 18, 21, 33 | rspcedvd 3637 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑐) = (0g‘𝑅)) |
35 | 10, 34 | jca 511 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (𝑐 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑐) = (0g‘𝑅))) |
36 | | oveq2 7456 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑐 → (𝑖(+g‘𝑅)𝑎) = (𝑖(+g‘𝑅)𝑐)) |
37 | 36 | eqeq1d 2742 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑐 → ((𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ (𝑖(+g‘𝑅)𝑐) = (0g‘𝑅))) |
38 | 37 | rexbidv 3185 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑐 → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑐) = (0g‘𝑅))) |
39 | 38 | elrab 3708 |
. . . . . . . . . 10
⊢ (𝑐 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} ↔ (𝑐 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑐) = (0g‘𝑅))) |
40 | 35, 39 | sylibr 234 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → 𝑐 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
41 | | primrootsunit1.3 |
. . . . . . . . . 10
⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} |
42 | 41 | eleq2i 2836 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝑈 ↔ 𝑐 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
43 | 40, 42 | sylibr 234 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → 𝑐 ∈ 𝑈) |
44 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈) → 𝜑) |
45 | 41 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
46 | 45 | eleq2d 2830 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑏 ∈ 𝑈 ↔ 𝑏 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
47 | 46 | biimpd 229 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑏 ∈ 𝑈 → 𝑏 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
48 | 47 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈) → 𝑏 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
49 | 44, 48 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈) → (𝜑 ∧ 𝑏 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
50 | | elrabi 3703 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} → 𝑏 ∈ (Base‘𝑅)) |
51 | 50 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) → 𝑏 ∈ (Base‘𝑅)) |
52 | 49, 51 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈) → 𝑏 ∈ (Base‘𝑅)) |
53 | 52 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑏 ∈ 𝑈 → 𝑏 ∈ (Base‘𝑅))) |
54 | 53 | ssrdv 4014 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ⊆ (Base‘𝑅)) |
55 | | eqid 2740 |
. . . . . . . . . . . 12
⊢ (𝑅 ↾s 𝑈) = (𝑅 ↾s 𝑈) |
56 | 55, 16 | ressbas2 17296 |
. . . . . . . . . . 11
⊢ (𝑈 ⊆ (Base‘𝑅) → 𝑈 = (Base‘(𝑅 ↾s 𝑈))) |
57 | 54, 56 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 = (Base‘(𝑅 ↾s 𝑈))) |
58 | 57 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → 𝑈 = (Base‘(𝑅 ↾s 𝑈))) |
59 | 58 | eleq2d 2830 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (𝑐 ∈ 𝑈 ↔ 𝑐 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
60 | 43, 59 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → 𝑐 ∈ (Base‘(𝑅 ↾s 𝑈))) |
61 | 11 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → 𝑅 ∈ Mnd) |
62 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → 𝑏 ∈ (Base‘𝑅)) |
63 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑈) → 𝜑) |
64 | 45 | eleq2d 2830 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝜑 → (𝑑 ∈ 𝑈 ↔ 𝑑 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
65 | 64 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → (𝑑 ∈ 𝑈 → 𝑑 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
66 | 65 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑈) → 𝑑 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
67 | 63, 66 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑈) → (𝜑 ∧ 𝑑 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
68 | | elrabi 3703 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑑 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} → 𝑑 ∈ (Base‘𝑅)) |
69 | 68 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑑 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) → 𝑑 ∈ (Base‘𝑅)) |
70 | 67, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑈) → 𝑑 ∈ (Base‘𝑅)) |
71 | 44, 70 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → 𝑑 ∈ (Base‘𝑅)) |
72 | 16, 28 | mndcl 18780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑅 ∈ Mnd ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅)) → (𝑏(+g‘𝑅)𝑑) ∈ (Base‘𝑅)) |
73 | 61, 62, 71, 72 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (𝑏(+g‘𝑅)𝑑) ∈ (Base‘𝑅)) |
74 | 41 | eleq2i 2836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑑 ∈ 𝑈 ↔ 𝑑 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
75 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑎 = 𝑑 → (𝑖(+g‘𝑅)𝑎) = (𝑖(+g‘𝑅)𝑑)) |
76 | 75 | eqeq1d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑎 = 𝑑 → ((𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ (𝑖(+g‘𝑅)𝑑) = (0g‘𝑅))) |
77 | 76 | rexbidv 3185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑎 = 𝑑 → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅))) |
78 | 77 | elrab 3708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑑 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} ↔ (𝑑 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅))) |
79 | 74, 78 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑑 ∈ 𝑈 ↔ (𝑑 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅))) |
80 | 79 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑑 ∈ 𝑈 → (𝑑 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅))) |
81 | 80 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑑 ∈ 𝑈 → ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅)) |
82 | 81 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅)) |
83 | 1 | ad4antr 731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 ∈ (Base‘𝑅)) ∧ (𝑖(+g‘𝑅)𝑑) = (0g‘𝑅)) → 𝑅 ∈ CMnd) |
84 | 71 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 ∈ (Base‘𝑅)) ∧ (𝑖(+g‘𝑅)𝑑) = (0g‘𝑅)) → 𝑑 ∈ (Base‘𝑅)) |
85 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 ∈ (Base‘𝑅)) ∧ (𝑖(+g‘𝑅)𝑑) = (0g‘𝑅)) → 𝑖 ∈ (Base‘𝑅)) |
86 | 16, 28 | cmncom 19840 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑅 ∈ CMnd ∧ 𝑑 ∈ (Base‘𝑅) ∧ 𝑖 ∈ (Base‘𝑅)) → (𝑑(+g‘𝑅)𝑖) = (𝑖(+g‘𝑅)𝑑)) |
87 | 83, 84, 85, 86 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 ∈ (Base‘𝑅)) ∧ (𝑖(+g‘𝑅)𝑑) = (0g‘𝑅)) → (𝑑(+g‘𝑅)𝑖) = (𝑖(+g‘𝑅)𝑑)) |
88 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 ∈ (Base‘𝑅)) ∧ (𝑖(+g‘𝑅)𝑑) = (0g‘𝑅)) → (𝑖(+g‘𝑅)𝑑) = (0g‘𝑅)) |
89 | 87, 88 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 ∈ (Base‘𝑅)) ∧ (𝑖(+g‘𝑅)𝑑) = (0g‘𝑅)) → (𝑑(+g‘𝑅)𝑖) = (0g‘𝑅)) |
90 | 89 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 ∈ (Base‘𝑅)) → ((𝑖(+g‘𝑅)𝑑) = (0g‘𝑅) → (𝑑(+g‘𝑅)𝑖) = (0g‘𝑅))) |
91 | 90 | reximdva 3174 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅) → ∃𝑖 ∈ (Base‘𝑅)(𝑑(+g‘𝑅)𝑖) = (0g‘𝑅))) |
92 | 82, 91 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ∃𝑖 ∈ (Base‘𝑅)(𝑑(+g‘𝑅)𝑖) = (0g‘𝑅)) |
93 | 16, 61, 71, 92 | mndmolinv 42052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ∃*𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅)) |
94 | 82, 93 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅) ∧ ∃*𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅))) |
95 | | reu5 3390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(∃!𝑖 ∈
(Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅) ↔ (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅) ∧ ∃*𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅))) |
96 | 94, 95 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅)) |
97 | | riotacl 7422 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(∃!𝑖 ∈
(Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅) → (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅)) ∈ (Base‘𝑅)) |
98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅)) ∈ (Base‘𝑅)) |
99 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(0g‘𝑅) = (0g‘𝑅) |
100 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(invg‘𝑅) = (invg‘𝑅) |
101 | 16, 28, 99, 100 | grpinvval 19020 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑑 ∈ (Base‘𝑅) →
((invg‘𝑅)‘𝑑) = (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅))) |
102 | 71, 101 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ((invg‘𝑅)‘𝑑) = (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅))) |
103 | 102 | eleq1d 2829 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (((invg‘𝑅)‘𝑑) ∈ (Base‘𝑅) ↔ (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑑) = (0g‘𝑅)) ∈ (Base‘𝑅))) |
104 | 98, 103 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ((invg‘𝑅)‘𝑑) ∈ (Base‘𝑅)) |
105 | 41 | eleq2i 2836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑏 ∈ 𝑈 ↔ 𝑏 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
106 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑎 = 𝑏 → (𝑖(+g‘𝑅)𝑎) = (𝑖(+g‘𝑅)𝑏)) |
107 | 106 | eqeq1d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑎 = 𝑏 → ((𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ (𝑖(+g‘𝑅)𝑏) = (0g‘𝑅))) |
108 | 107 | rexbidv 3185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑎 = 𝑏 → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅))) |
109 | 108 | elrab 3708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑏 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} ↔ (𝑏 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅))) |
110 | 105, 109 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑏 ∈ 𝑈 ↔ (𝑏 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅))) |
111 | 110 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑏 ∈ 𝑈 → (𝑏 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅))) |
112 | 111 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑏 ∈ 𝑈 → ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅)) |
113 | 112 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅)) |
114 | 1 | ad4antr 731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 ∈ (Base‘𝑅)) ∧ (𝑖(+g‘𝑅)𝑏) = (0g‘𝑅)) → 𝑅 ∈ CMnd) |
115 | 62 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 ∈ (Base‘𝑅)) ∧ (𝑖(+g‘𝑅)𝑏) = (0g‘𝑅)) → 𝑏 ∈ (Base‘𝑅)) |
116 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 ∈ (Base‘𝑅)) ∧ (𝑖(+g‘𝑅)𝑏) = (0g‘𝑅)) → 𝑖 ∈ (Base‘𝑅)) |
117 | 16, 28 | cmncom 19840 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑅 ∈ CMnd ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑖 ∈ (Base‘𝑅)) → (𝑏(+g‘𝑅)𝑖) = (𝑖(+g‘𝑅)𝑏)) |
118 | 114, 115,
116, 117 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 ∈ (Base‘𝑅)) ∧ (𝑖(+g‘𝑅)𝑏) = (0g‘𝑅)) → (𝑏(+g‘𝑅)𝑖) = (𝑖(+g‘𝑅)𝑏)) |
119 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 ∈ (Base‘𝑅)) ∧ (𝑖(+g‘𝑅)𝑏) = (0g‘𝑅)) → (𝑖(+g‘𝑅)𝑏) = (0g‘𝑅)) |
120 | 118, 119 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 ∈ (Base‘𝑅)) ∧ (𝑖(+g‘𝑅)𝑏) = (0g‘𝑅)) → (𝑏(+g‘𝑅)𝑖) = (0g‘𝑅)) |
121 | 120 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 ∈ (Base‘𝑅)) → ((𝑖(+g‘𝑅)𝑏) = (0g‘𝑅) → (𝑏(+g‘𝑅)𝑖) = (0g‘𝑅))) |
122 | 121 | reximdva 3174 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅) → ∃𝑖 ∈ (Base‘𝑅)(𝑏(+g‘𝑅)𝑖) = (0g‘𝑅))) |
123 | 113, 122 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ∃𝑖 ∈ (Base‘𝑅)(𝑏(+g‘𝑅)𝑖) = (0g‘𝑅)) |
124 | 16, 61, 62, 123 | mndmolinv 42052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ∃*𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅)) |
125 | 113, 124 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅) ∧ ∃*𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅))) |
126 | | reu5 3390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(∃!𝑖 ∈
(Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅) ↔ (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅) ∧ ∃*𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅))) |
127 | 125, 126 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ∃!𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅)) |
128 | | riotacl 7422 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(∃!𝑖 ∈
(Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅) → (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅)) ∈ (Base‘𝑅)) |
129 | 127, 128 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅)) ∈ (Base‘𝑅)) |
130 | 16, 28, 99, 100 | grpinvval 19020 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 ∈ (Base‘𝑅) →
((invg‘𝑅)‘𝑏) = (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅))) |
131 | 62, 130 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ((invg‘𝑅)‘𝑏) = (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅))) |
132 | 131 | eleq1d 2829 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (((invg‘𝑅)‘𝑏) ∈ (Base‘𝑅) ↔ (℩𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑏) = (0g‘𝑅)) ∈ (Base‘𝑅))) |
133 | 129, 132 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ((invg‘𝑅)‘𝑏) ∈ (Base‘𝑅)) |
134 | 16, 28 | mndcl 18780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑅 ∈ Mnd ∧
((invg‘𝑅)‘𝑑) ∈ (Base‘𝑅) ∧ ((invg‘𝑅)‘𝑏) ∈ (Base‘𝑅)) → (((invg‘𝑅)‘𝑑)(+g‘𝑅)((invg‘𝑅)‘𝑏)) ∈ (Base‘𝑅)) |
135 | 61, 104, 133, 134 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (((invg‘𝑅)‘𝑑)(+g‘𝑅)((invg‘𝑅)‘𝑏)) ∈ (Base‘𝑅)) |
136 | | oveq1 7455 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑖 =
(((invg‘𝑅)‘𝑑)(+g‘𝑅)((invg‘𝑅)‘𝑏)) → (𝑖(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = ((((invg‘𝑅)‘𝑑)(+g‘𝑅)((invg‘𝑅)‘𝑏))(+g‘𝑅)(𝑏(+g‘𝑅)𝑑))) |
137 | 136 | eqeq1d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑖 =
(((invg‘𝑅)‘𝑑)(+g‘𝑅)((invg‘𝑅)‘𝑏)) → ((𝑖(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = (0g‘𝑅) ↔ ((((invg‘𝑅)‘𝑑)(+g‘𝑅)((invg‘𝑅)‘𝑏))(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = (0g‘𝑅))) |
138 | 137 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) ∧ 𝑖 = (((invg‘𝑅)‘𝑑)(+g‘𝑅)((invg‘𝑅)‘𝑏))) → ((𝑖(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = (0g‘𝑅) ↔ ((((invg‘𝑅)‘𝑑)(+g‘𝑅)((invg‘𝑅)‘𝑏))(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = (0g‘𝑅))) |
139 | 104, 133,
73 | 3jca 1128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (((invg‘𝑅)‘𝑑) ∈ (Base‘𝑅) ∧ ((invg‘𝑅)‘𝑏) ∈ (Base‘𝑅) ∧ (𝑏(+g‘𝑅)𝑑) ∈ (Base‘𝑅))) |
140 | 16, 28 | mndass 18781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑅 ∈ Mnd ∧
(((invg‘𝑅)‘𝑑) ∈ (Base‘𝑅) ∧ ((invg‘𝑅)‘𝑏) ∈ (Base‘𝑅) ∧ (𝑏(+g‘𝑅)𝑑) ∈ (Base‘𝑅))) → ((((invg‘𝑅)‘𝑑)(+g‘𝑅)((invg‘𝑅)‘𝑏))(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = (((invg‘𝑅)‘𝑑)(+g‘𝑅)(((invg‘𝑅)‘𝑏)(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)))) |
141 | 61, 139, 140 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ((((invg‘𝑅)‘𝑑)(+g‘𝑅)((invg‘𝑅)‘𝑏))(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = (((invg‘𝑅)‘𝑑)(+g‘𝑅)(((invg‘𝑅)‘𝑏)(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)))) |
142 | 133, 62, 71 | 3jca 1128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (((invg‘𝑅)‘𝑏) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) |
143 | 16, 28 | mndass 18781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑅 ∈ Mnd ∧
(((invg‘𝑅)‘𝑏) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) → ((((invg‘𝑅)‘𝑏)(+g‘𝑅)𝑏)(+g‘𝑅)𝑑) = (((invg‘𝑅)‘𝑏)(+g‘𝑅)(𝑏(+g‘𝑅)𝑑))) |
144 | 143 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑅 ∈ Mnd ∧
(((invg‘𝑅)‘𝑏) ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) → (((invg‘𝑅)‘𝑏)(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = ((((invg‘𝑅)‘𝑏)(+g‘𝑅)𝑏)(+g‘𝑅)𝑑)) |
145 | 61, 142, 144 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (((invg‘𝑅)‘𝑏)(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = ((((invg‘𝑅)‘𝑏)(+g‘𝑅)𝑏)(+g‘𝑅)𝑑)) |
146 | 145 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (((invg‘𝑅)‘𝑑)(+g‘𝑅)(((invg‘𝑅)‘𝑏)(+g‘𝑅)(𝑏(+g‘𝑅)𝑑))) = (((invg‘𝑅)‘𝑑)(+g‘𝑅)((((invg‘𝑅)‘𝑏)(+g‘𝑅)𝑏)(+g‘𝑅)𝑑))) |
147 | 62, 127 | linvh 42053 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (((invg‘𝑅)‘𝑏)(+g‘𝑅)𝑏) = (0g‘𝑅)) |
148 | 147 | oveq1d 7463 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ((((invg‘𝑅)‘𝑏)(+g‘𝑅)𝑏)(+g‘𝑅)𝑑) = ((0g‘𝑅)(+g‘𝑅)𝑑)) |
149 | 148 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (((invg‘𝑅)‘𝑑)(+g‘𝑅)((((invg‘𝑅)‘𝑏)(+g‘𝑅)𝑏)(+g‘𝑅)𝑑)) = (((invg‘𝑅)‘𝑑)(+g‘𝑅)((0g‘𝑅)(+g‘𝑅)𝑑))) |
150 | 16, 28, 99 | mndlid 18792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑅 ∈ Mnd ∧ 𝑑 ∈ (Base‘𝑅)) →
((0g‘𝑅)(+g‘𝑅)𝑑) = 𝑑) |
151 | 61, 71, 150 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ((0g‘𝑅)(+g‘𝑅)𝑑) = 𝑑) |
152 | 151 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (((invg‘𝑅)‘𝑑)(+g‘𝑅)((0g‘𝑅)(+g‘𝑅)𝑑)) = (((invg‘𝑅)‘𝑑)(+g‘𝑅)𝑑)) |
153 | 71, 96 | linvh 42053 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (((invg‘𝑅)‘𝑑)(+g‘𝑅)𝑑) = (0g‘𝑅)) |
154 | 152, 153 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (((invg‘𝑅)‘𝑑)(+g‘𝑅)((0g‘𝑅)(+g‘𝑅)𝑑)) = (0g‘𝑅)) |
155 | 149, 154 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (((invg‘𝑅)‘𝑑)(+g‘𝑅)((((invg‘𝑅)‘𝑏)(+g‘𝑅)𝑏)(+g‘𝑅)𝑑)) = (0g‘𝑅)) |
156 | 146, 155 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (((invg‘𝑅)‘𝑑)(+g‘𝑅)(((invg‘𝑅)‘𝑏)(+g‘𝑅)(𝑏(+g‘𝑅)𝑑))) = (0g‘𝑅)) |
157 | 141, 156 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ((((invg‘𝑅)‘𝑑)(+g‘𝑅)((invg‘𝑅)‘𝑏))(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = (0g‘𝑅)) |
158 | 135, 138,
157 | rspcedvd 3637 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = (0g‘𝑅)) |
159 | 73, 158 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ((𝑏(+g‘𝑅)𝑑) ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = (0g‘𝑅))) |
160 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑎 = (𝑏(+g‘𝑅)𝑑) → (𝑖(+g‘𝑅)𝑎) = (𝑖(+g‘𝑅)(𝑏(+g‘𝑅)𝑑))) |
161 | 160 | eqeq1d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑎 = (𝑏(+g‘𝑅)𝑑) → ((𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ (𝑖(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = (0g‘𝑅))) |
162 | 161 | rexbidv 3185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 = (𝑏(+g‘𝑅)𝑑) → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = (0g‘𝑅))) |
163 | 162 | elrab 3708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑏(+g‘𝑅)𝑑) ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} ↔ ((𝑏(+g‘𝑅)𝑑) ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)(𝑏(+g‘𝑅)𝑑)) = (0g‘𝑅))) |
164 | 159, 163 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (𝑏(+g‘𝑅)𝑑) ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
165 | 41 | eleq2i 2836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑏(+g‘𝑅)𝑑) ∈ 𝑈 ↔ (𝑏(+g‘𝑅)𝑑) ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
166 | 165 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ((𝑏(+g‘𝑅)𝑑) ∈ 𝑈 ↔ (𝑏(+g‘𝑅)𝑑) ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
167 | 164, 166 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (𝑏(+g‘𝑅)𝑑) ∈ 𝑈) |
168 | 167 | ralrimiva 3152 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈) → ∀𝑑 ∈ 𝑈 (𝑏(+g‘𝑅)𝑑) ∈ 𝑈) |
169 | 168 | ralrimiva 3152 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ∀𝑏 ∈ 𝑈 ∀𝑑 ∈ 𝑈 (𝑏(+g‘𝑅)𝑑) ∈ 𝑈) |
170 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 = (0g‘𝑅) → (𝑖(+g‘𝑅)𝑎) = (𝑖(+g‘𝑅)(0g‘𝑅))) |
171 | 170 | eqeq1d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = (0g‘𝑅) → ((𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ (𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
172 | 171 | rexbidv 3185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 = (0g‘𝑅) → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
173 | 16, 99 | mndidcl 18787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑅 ∈ Mnd →
(0g‘𝑅)
∈ (Base‘𝑅)) |
174 | 11, 173 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
175 | 11, 174 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝑅 ∈ Mnd ∧ (0g‘𝑅) ∈ (Base‘𝑅))) |
176 | 16, 28, 99 | mndlid 18792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑅 ∈ Mnd ∧
(0g‘𝑅)
∈ (Base‘𝑅))
→ ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
177 | 175, 176 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 →
((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
178 | 174, 177 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 →
((0g‘𝑅)
∈ (Base‘𝑅) ∧
((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
179 | | oveq1 7455 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑖 = (0g‘𝑅) → (𝑖(+g‘𝑅)(0g‘𝑅)) = ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅))) |
180 | 179 | eqeq1d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 = (0g‘𝑅) → ((𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅) ↔ ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
181 | 180 | rspcev 3635 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((0g‘𝑅) ∈ (Base‘𝑅) ∧ ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) → ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
182 | 178, 181 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
183 | 172, 174,
182 | elrabd 3710 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (0g‘𝑅) ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
184 | 45 | eleq2d 2830 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 →
((0g‘𝑅)
∈ 𝑈 ↔
(0g‘𝑅)
∈ {𝑎 ∈
(Base‘𝑅) ∣
∃𝑖 ∈
(Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
185 | 183, 184 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (0g‘𝑅) ∈ 𝑈) |
186 | 16, 28, 99, 55 | issubmnd 18799 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑅 ∈ Mnd ∧ 𝑈 ⊆ (Base‘𝑅) ∧
(0g‘𝑅)
∈ 𝑈) → ((𝑅 ↾s 𝑈) ∈ Mnd ↔
∀𝑏 ∈ 𝑈 ∀𝑑 ∈ 𝑈 (𝑏(+g‘𝑅)𝑑) ∈ 𝑈)) |
187 | 11, 54, 185, 186 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((𝑅 ↾s 𝑈) ∈ Mnd ↔ ∀𝑏 ∈ 𝑈 ∀𝑑 ∈ 𝑈 (𝑏(+g‘𝑅)𝑑) ∈ 𝑈)) |
188 | 169, 187 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Mnd) |
189 | 45 | eleq2d 2830 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → (𝑞 ∈ 𝑈 ↔ 𝑞 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
190 | 189 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → (𝑞 ∈ 𝑈 → 𝑞 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)})) |
191 | 190 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑈) → 𝑞 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
192 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑎 = 𝑞 → (𝑖(+g‘𝑅)𝑎) = (𝑖(+g‘𝑅)𝑞)) |
193 | 192 | eqeq1d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑎 = 𝑞 → ((𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) |
194 | 193 | rexbidv 3185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑎 = 𝑞 → (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) |
195 | 194 | elrab 3708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑞 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} ↔ (𝑞 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) |
196 | 191, 195 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑈) → (𝑞 ∈ (Base‘𝑅) ∧ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) |
197 | 196 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑈) → ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑞) = (0g‘𝑅)) |
198 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ (𝑖 ∈ (Base‘𝑅) ∧ (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) → 𝑖 ∈ (Base‘𝑅)) |
199 | 196 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑈) → 𝑞 ∈ (Base‘𝑅)) |
200 | 199 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ (𝑖 ∈ (Base‘𝑅) ∧ (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) → 𝑞 ∈ (Base‘𝑅)) |
201 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ (𝑖 ∈ (Base‘𝑅) ∧ (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) ∧ 𝑗 = 𝑞) → 𝑗 = 𝑞) |
202 | 201 | oveq1d 7463 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ (𝑖 ∈ (Base‘𝑅) ∧ (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) ∧ 𝑗 = 𝑞) → (𝑗(+g‘𝑅)𝑖) = (𝑞(+g‘𝑅)𝑖)) |
203 | 202 | eqeq1d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ (𝑖 ∈ (Base‘𝑅) ∧ (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) ∧ 𝑗 = 𝑞) → ((𝑗(+g‘𝑅)𝑖) = (0g‘𝑅) ↔ (𝑞(+g‘𝑅)𝑖) = (0g‘𝑅))) |
204 | 1 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ (𝑖 ∈ (Base‘𝑅) ∧ (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) → 𝑅 ∈ CMnd) |
205 | 16, 28 | cmncom 19840 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑅 ∈ CMnd ∧ 𝑖 ∈ (Base‘𝑅) ∧ 𝑞 ∈ (Base‘𝑅)) → (𝑖(+g‘𝑅)𝑞) = (𝑞(+g‘𝑅)𝑖)) |
206 | 204, 198,
200, 205 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ (𝑖 ∈ (Base‘𝑅) ∧ (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) → (𝑖(+g‘𝑅)𝑞) = (𝑞(+g‘𝑅)𝑖)) |
207 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ (𝑖 ∈ (Base‘𝑅) ∧ (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) → (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅)) |
208 | 206, 207 | eqtr3d 2782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ (𝑖 ∈ (Base‘𝑅) ∧ (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) → (𝑞(+g‘𝑅)𝑖) = (0g‘𝑅)) |
209 | 200, 203,
208 | rspcedvd 3637 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ (𝑖 ∈ (Base‘𝑅) ∧ (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) → ∃𝑗 ∈ (Base‘𝑅)(𝑗(+g‘𝑅)𝑖) = (0g‘𝑅)) |
210 | 198, 209 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ (𝑖 ∈ (Base‘𝑅) ∧ (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) → (𝑖 ∈ (Base‘𝑅) ∧ ∃𝑗 ∈ (Base‘𝑅)(𝑗(+g‘𝑅)𝑖) = (0g‘𝑅))) |
211 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
Ⅎ𝑗(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) |
212 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
Ⅎ𝑖(𝑗(+g‘𝑅)𝑎) = (0g‘𝑅) |
213 | | oveq1 7455 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑖 = 𝑗 → (𝑖(+g‘𝑅)𝑎) = (𝑗(+g‘𝑅)𝑎)) |
214 | 213 | eqeq1d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑖 = 𝑗 → ((𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ (𝑗(+g‘𝑅)𝑎) = (0g‘𝑅))) |
215 | 211, 212,
214 | cbvrexw 3313 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(∃𝑖 ∈
(Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ ∃𝑗 ∈ (Base‘𝑅)(𝑗(+g‘𝑅)𝑎) = (0g‘𝑅)) |
216 | 215 | rabbii 3449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑗 ∈ (Base‘𝑅)(𝑗(+g‘𝑅)𝑎) = (0g‘𝑅)} |
217 | 41, 216 | eqtri 2768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑗 ∈ (Base‘𝑅)(𝑗(+g‘𝑅)𝑎) = (0g‘𝑅)} |
218 | 217 | eleq2i 2836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑖 ∈ 𝑈 ↔ 𝑖 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑗 ∈ (Base‘𝑅)(𝑗(+g‘𝑅)𝑎) = (0g‘𝑅)}) |
219 | | oveq2 7456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑎 = 𝑖 → (𝑗(+g‘𝑅)𝑎) = (𝑗(+g‘𝑅)𝑖)) |
220 | 219 | eqeq1d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑎 = 𝑖 → ((𝑗(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ (𝑗(+g‘𝑅)𝑖) = (0g‘𝑅))) |
221 | 220 | rexbidv 3185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑎 = 𝑖 → (∃𝑗 ∈ (Base‘𝑅)(𝑗(+g‘𝑅)𝑎) = (0g‘𝑅) ↔ ∃𝑗 ∈ (Base‘𝑅)(𝑗(+g‘𝑅)𝑖) = (0g‘𝑅))) |
222 | 221 | elrab 3708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑖 ∈ {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑗 ∈ (Base‘𝑅)(𝑗(+g‘𝑅)𝑎) = (0g‘𝑅)} ↔ (𝑖 ∈ (Base‘𝑅) ∧ ∃𝑗 ∈ (Base‘𝑅)(𝑗(+g‘𝑅)𝑖) = (0g‘𝑅))) |
223 | 218, 222 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑖 ∈ 𝑈 ↔ (𝑖 ∈ (Base‘𝑅) ∧ ∃𝑗 ∈ (Base‘𝑅)(𝑗(+g‘𝑅)𝑖) = (0g‘𝑅))) |
224 | 210, 223 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ (𝑖 ∈ (Base‘𝑅) ∧ (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) → 𝑖 ∈ 𝑈) |
225 | 197, 224,
207 | reximssdv 3179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑈) → ∃𝑖 ∈ 𝑈 (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅)) |
226 | | fvexd 6935 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
227 | 41, 226 | rabexd 5358 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝜑 → 𝑈 ∈ V) |
228 | 55, 28 | ressplusg 17349 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑈 ∈ V →
(+g‘𝑅) =
(+g‘(𝑅
↾s 𝑈))) |
229 | 227, 228 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝜑 → (+g‘𝑅) = (+g‘(𝑅 ↾s 𝑈))) |
230 | 229 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 →
(+g‘(𝑅
↾s 𝑈)) =
(+g‘𝑅)) |
231 | 230 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑈) → (+g‘(𝑅 ↾s 𝑈)) = (+g‘𝑅)) |
232 | 231 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ 𝑤 = 𝑖) → (+g‘(𝑅 ↾s 𝑈)) = (+g‘𝑅)) |
233 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ 𝑤 = 𝑖) → 𝑤 = 𝑖) |
234 | | eqidd 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ 𝑤 = 𝑖) → 𝑞 = 𝑞) |
235 | 232, 233,
234 | oveq123d 7469 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ 𝑤 = 𝑖) → (𝑤(+g‘(𝑅 ↾s 𝑈))𝑞) = (𝑖(+g‘𝑅)𝑞)) |
236 | 55, 16, 99 | ress0g 18800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑅 ∈ Mnd ∧
(0g‘𝑅)
∈ 𝑈 ∧ 𝑈 ⊆ (Base‘𝑅)) →
(0g‘𝑅) =
(0g‘(𝑅
↾s 𝑈))) |
237 | 11, 185, 54, 236 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → (0g‘𝑅) = (0g‘(𝑅 ↾s 𝑈))) |
238 | 237 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 →
(0g‘(𝑅
↾s 𝑈)) =
(0g‘𝑅)) |
239 | 238 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑈) → (0g‘(𝑅 ↾s 𝑈)) = (0g‘𝑅)) |
240 | 239 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ 𝑤 = 𝑖) → (0g‘(𝑅 ↾s 𝑈)) = (0g‘𝑅)) |
241 | 235, 240 | eqeq12d 2756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ 𝑤 = 𝑖) → ((𝑤(+g‘(𝑅 ↾s 𝑈))𝑞) = (0g‘(𝑅 ↾s 𝑈)) ↔ (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) |
242 | | eqidd 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑞 ∈ 𝑈) ∧ 𝑤 = 𝑖) → 𝑈 = 𝑈) |
243 | 241, 242 | cbvrexdva2 3357 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑈) → (∃𝑤 ∈ 𝑈 (𝑤(+g‘(𝑅 ↾s 𝑈))𝑞) = (0g‘(𝑅 ↾s 𝑈)) ↔ ∃𝑖 ∈ 𝑈 (𝑖(+g‘𝑅)𝑞) = (0g‘𝑅))) |
244 | 225, 243 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (𝑤(+g‘(𝑅 ↾s 𝑈))𝑞) = (0g‘(𝑅 ↾s 𝑈))) |
245 | 57 | eqcomd 2746 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (Base‘(𝑅 ↾s 𝑈)) = 𝑈) |
246 | 245 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑈) → (Base‘(𝑅 ↾s 𝑈)) = 𝑈) |
247 | 244, 246 | rexeqtrrdv 3339 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑈) → ∃𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))(𝑤(+g‘(𝑅 ↾s 𝑈))𝑞) = (0g‘(𝑅 ↾s 𝑈))) |
248 | 247 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑞 ∈ 𝑈 → ∃𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))(𝑤(+g‘(𝑅 ↾s 𝑈))𝑞) = (0g‘(𝑅 ↾s 𝑈)))) |
249 | 57 | eleq2d 2830 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑞 ∈ 𝑈 ↔ 𝑞 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
250 | 249 | imbi1d 341 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ((𝑞 ∈ 𝑈 → ∃𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))(𝑤(+g‘(𝑅 ↾s 𝑈))𝑞) = (0g‘(𝑅 ↾s 𝑈))) ↔ (𝑞 ∈ (Base‘(𝑅 ↾s 𝑈)) → ∃𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))(𝑤(+g‘(𝑅 ↾s 𝑈))𝑞) = (0g‘(𝑅 ↾s 𝑈))))) |
251 | 248, 250 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑞 ∈ (Base‘(𝑅 ↾s 𝑈)) → ∃𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))(𝑤(+g‘(𝑅 ↾s 𝑈))𝑞) = (0g‘(𝑅 ↾s 𝑈)))) |
252 | 251 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑞 ∈ (Base‘(𝑅 ↾s 𝑈))) → ∃𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))(𝑤(+g‘(𝑅 ↾s 𝑈))𝑞) = (0g‘(𝑅 ↾s 𝑈))) |
253 | 252 | ralrimiva 3152 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ∀𝑞 ∈ (Base‘(𝑅 ↾s 𝑈))∃𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))(𝑤(+g‘(𝑅 ↾s 𝑈))𝑞) = (0g‘(𝑅 ↾s 𝑈))) |
254 | 188, 253 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑅 ↾s 𝑈) ∈ Mnd ∧ ∀𝑞 ∈ (Base‘(𝑅 ↾s 𝑈))∃𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))(𝑤(+g‘(𝑅 ↾s 𝑈))𝑞) = (0g‘(𝑅 ↾s 𝑈)))) |
255 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(Base‘(𝑅
↾s 𝑈)) =
(Base‘(𝑅
↾s 𝑈)) |
256 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(+g‘(𝑅 ↾s 𝑈)) = (+g‘(𝑅 ↾s 𝑈)) |
257 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(0g‘(𝑅 ↾s 𝑈)) = (0g‘(𝑅 ↾s 𝑈)) |
258 | 255, 256,
257 | isgrp 18979 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ↾s 𝑈) ∈ Grp ↔ ((𝑅 ↾s 𝑈) ∈ Mnd ∧ ∀𝑞 ∈ (Base‘(𝑅 ↾s 𝑈))∃𝑤 ∈ (Base‘(𝑅 ↾s 𝑈))(𝑤(+g‘(𝑅 ↾s 𝑈))𝑞) = (0g‘(𝑅 ↾s 𝑈)))) |
259 | 254, 258 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Grp) |
260 | 259 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (𝑅 ↾s 𝑈) ∈ Grp) |
261 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → 𝑏 ∈ 𝑈) |
262 | 57 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈) → 𝑈 = (Base‘(𝑅 ↾s 𝑈))) |
263 | 262 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → 𝑈 = (Base‘(𝑅 ↾s 𝑈))) |
264 | 263 | eleq2d 2830 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (𝑏 ∈ 𝑈 ↔ 𝑏 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
265 | 261, 264 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → 𝑏 ∈ (Base‘(𝑅 ↾s 𝑈))) |
266 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → 𝑑 ∈ 𝑈) |
267 | 263 | eleq2d 2830 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (𝑑 ∈ 𝑈 ↔ 𝑑 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
268 | 266, 267 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → 𝑑 ∈ (Base‘(𝑅 ↾s 𝑈))) |
269 | 255, 256 | grpcl 18981 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ↾s 𝑈) ∈ Grp ∧ 𝑏 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ 𝑑 ∈ (Base‘(𝑅 ↾s 𝑈))) → (𝑏(+g‘(𝑅 ↾s 𝑈))𝑑) ∈ (Base‘(𝑅 ↾s 𝑈))) |
270 | 260, 265,
268, 269 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (𝑏(+g‘(𝑅 ↾s 𝑈))𝑑) ∈ (Base‘(𝑅 ↾s 𝑈))) |
271 | 263 | eleq2d 2830 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ((𝑏(+g‘(𝑅 ↾s 𝑈))𝑑) ∈ 𝑈 ↔ (𝑏(+g‘(𝑅 ↾s 𝑈))𝑑) ∈ (Base‘(𝑅 ↾s 𝑈)))) |
272 | 270, 271 | mpbird 257 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (𝑏(+g‘(𝑅 ↾s 𝑈))𝑑) ∈ 𝑈) |
273 | 229 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈) → (+g‘𝑅) = (+g‘(𝑅 ↾s 𝑈))) |
274 | 273 | oveqdr 7476 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (𝑏(+g‘𝑅)𝑑) = (𝑏(+g‘(𝑅 ↾s 𝑈))𝑑)) |
275 | 274 | eleq1d 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → ((𝑏(+g‘𝑅)𝑑) ∈ 𝑈 ↔ (𝑏(+g‘(𝑅 ↾s 𝑈))𝑑) ∈ 𝑈)) |
276 | 272, 275 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑏 ∈ 𝑈) ∧ 𝑑 ∈ 𝑈) → (𝑏(+g‘𝑅)𝑑) ∈ 𝑈) |
277 | 276 | ralrimiva 3152 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈) → ∀𝑑 ∈ 𝑈 (𝑏(+g‘𝑅)𝑑) ∈ 𝑈) |
278 | 277 | ralrimiva 3152 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑏 ∈ 𝑈 ∀𝑑 ∈ 𝑈 (𝑏(+g‘𝑅)𝑑) ∈ 𝑈) |
279 | 278, 187 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Mnd) |
280 | 11, 279 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑅 ∈ Mnd ∧ (𝑅 ↾s 𝑈) ∈ Mnd)) |
281 | 54, 185 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 ⊆ (Base‘𝑅) ∧ (0g‘𝑅) ∈ 𝑈)) |
282 | 280, 281 | jca 511 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑅 ∈ Mnd ∧ (𝑅 ↾s 𝑈) ∈ Mnd) ∧ (𝑈 ⊆ (Base‘𝑅) ∧ (0g‘𝑅) ∈ 𝑈))) |
283 | 16, 99 | issubmndb 18840 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ (SubMnd‘𝑅) ↔ ((𝑅 ∈ Mnd ∧ (𝑅 ↾s 𝑈) ∈ Mnd) ∧ (𝑈 ⊆ (Base‘𝑅) ∧ (0g‘𝑅) ∈ 𝑈))) |
284 | 282, 283 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ (SubMnd‘𝑅)) |
285 | 284 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → 𝑈 ∈ (SubMnd‘𝑅)) |
286 | 285, 5, 43 | 3jca 1128 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (𝑈 ∈ (SubMnd‘𝑅) ∧ 𝐾 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈)) |
287 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(.g‘(𝑅 ↾s 𝑈)) = (.g‘(𝑅 ↾s 𝑈)) |
288 | 6, 55, 287 | submmulg 19158 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ (SubMnd‘𝑅) ∧ 𝐾 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈) → (𝐾(.g‘𝑅)𝑐) = (𝐾(.g‘(𝑅 ↾s 𝑈))𝑐)) |
289 | 288 | eqcomd 2746 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (SubMnd‘𝑅) ∧ 𝐾 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑐) = (𝐾(.g‘𝑅)𝑐)) |
290 | 286, 289 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑐) = (𝐾(.g‘𝑅)𝑐)) |
291 | 238 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (0g‘(𝑅 ↾s 𝑈)) = (0g‘𝑅)) |
292 | 290, 291 | eqeq12d 2756 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → ((𝐾(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) ↔ (𝐾(.g‘𝑅)𝑐) = (0g‘𝑅))) |
293 | 32, 292 | mpbird 257 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈))) |
294 | 9 | simp3d 1144 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑐) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) |
295 | | eqidd 2741 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → ℕ0 =
ℕ0) |
296 | 285 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) → 𝑈 ∈ (SubMnd‘𝑅)) |
297 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) → 𝑙 ∈
ℕ0) |
298 | 43 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) → 𝑐 ∈ 𝑈) |
299 | 296, 297,
298 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) → (𝑈 ∈ (SubMnd‘𝑅) ∧ 𝑙 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈)) |
300 | 6, 55, 287 | submmulg 19158 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ (SubMnd‘𝑅) ∧ 𝑙 ∈ ℕ0 ∧ 𝑐 ∈ 𝑈) → (𝑙(.g‘𝑅)𝑐) = (𝑙(.g‘(𝑅 ↾s 𝑈))𝑐)) |
301 | 299, 300 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) → (𝑙(.g‘𝑅)𝑐) = (𝑙(.g‘(𝑅 ↾s 𝑈))𝑐)) |
302 | 237 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) →
(0g‘𝑅) =
(0g‘(𝑅
↾s 𝑈))) |
303 | 301, 302 | eqeq12d 2756 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) → ((𝑙(.g‘𝑅)𝑐) = (0g‘𝑅) ↔ (𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)))) |
304 | 303 | imbi1d 341 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) → (((𝑙(.g‘𝑅)𝑐) = (0g‘𝑅) → 𝐾 ∥ 𝑙) ↔ ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
305 | 295, 304 | raleqbidva 3340 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑐) = (0g‘𝑅) → 𝐾 ∥ 𝑙) ↔ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
306 | 294, 305 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) |
307 | 60, 293, 306 | 3jca 1128 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (𝑐 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
308 | 1 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈) → 𝑅 ∈ CMnd) |
309 | 62 | 3impa 1110 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈) → 𝑏 ∈ (Base‘𝑅)) |
310 | 71 | 3impa 1110 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈) → 𝑑 ∈ (Base‘𝑅)) |
311 | 16, 28 | cmncom 19840 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CMnd ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅)) → (𝑏(+g‘𝑅)𝑑) = (𝑑(+g‘𝑅)𝑏)) |
312 | 308, 309,
310, 311 | syl3anc 1371 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈) → (𝑏(+g‘𝑅)𝑑) = (𝑑(+g‘𝑅)𝑏)) |
313 | 57, 229, 279, 312 | iscmnd 19836 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ CMnd) |
314 | 313, 4, 287 | isprimroot 42050 |
. . . . . . 7
⊢ (𝜑 → (𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ↔ (𝑐 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
315 | 314 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → (𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ↔ (𝑐 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
316 | 307, 315 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑅 PrimRoots 𝐾)) → 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
317 | 316 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑐 ∈ (𝑅 PrimRoots 𝐾) → 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾))) |
318 | 317 | ssrdv 4014 |
. . 3
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) ⊆ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
319 | 313 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑅 ↾s 𝑈) ∈ CMnd) |
320 | 4 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝐾 ∈
ℕ0) |
321 | 319, 320,
287 | isprimroot 42050 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ↔ (𝑐 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
322 | 321 | biimpd 229 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → (𝑐 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)))) |
323 | 322 | syldbl2 840 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑐 ∈ (Base‘(𝑅 ↾s 𝑈)) ∧ (𝐾(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙))) |
324 | 323 | simp1d 1142 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑐 ∈ (Base‘(𝑅 ↾s 𝑈))) |
325 | 54 | sselda 4008 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑈) → 𝑐 ∈ (Base‘𝑅)) |
326 | 325 | ex 412 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑐 ∈ 𝑈 → 𝑐 ∈ (Base‘𝑅))) |
327 | 57 | eleq2d 2830 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑐 ∈ 𝑈 ↔ 𝑐 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
328 | 327 | imbi1d 341 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑐 ∈ 𝑈 → 𝑐 ∈ (Base‘𝑅)) ↔ (𝑐 ∈ (Base‘(𝑅 ↾s 𝑈)) → 𝑐 ∈ (Base‘𝑅)))) |
329 | 326, 328 | mpbid 232 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑐 ∈ (Base‘(𝑅 ↾s 𝑈)) → 𝑐 ∈ (Base‘𝑅))) |
330 | 329 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑐 ∈ (Base‘(𝑅 ↾s 𝑈)) → 𝑐 ∈ (Base‘𝑅))) |
331 | 330 | imp 406 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) ∧ 𝑐 ∈ (Base‘(𝑅 ↾s 𝑈))) → 𝑐 ∈ (Base‘𝑅)) |
332 | 324, 331 | mpdan 686 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑐 ∈ (Base‘𝑅)) |
333 | 284 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑈 ∈ (SubMnd‘𝑅)) |
334 | 327 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑐 ∈ 𝑈 ↔ 𝑐 ∈ (Base‘(𝑅 ↾s 𝑈)))) |
335 | 324, 334 | mpbird 257 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑐 ∈ 𝑈) |
336 | 333, 320,
335, 288 | syl3anc 1371 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐾(.g‘𝑅)𝑐) = (𝐾(.g‘(𝑅 ↾s 𝑈))𝑐)) |
337 | 323 | simp2d 1143 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐾(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈))) |
338 | 238 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (0g‘(𝑅 ↾s 𝑈)) = (0g‘𝑅)) |
339 | 336, 337,
338 | 3eqtrd 2784 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝐾(.g‘𝑅)𝑐) = (0g‘𝑅)) |
340 | 323 | simp3d 1144 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙)) |
341 | 333 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) → 𝑈 ∈ (SubMnd‘𝑅)) |
342 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) → 𝑙 ∈
ℕ0) |
343 | 335 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) → 𝑐 ∈ 𝑈) |
344 | 341, 342,
343, 300 | syl3anc 1371 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) → (𝑙(.g‘𝑅)𝑐) = (𝑙(.g‘(𝑅 ↾s 𝑈))𝑐)) |
345 | 344 | eqcomd 2746 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) → (𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (𝑙(.g‘𝑅)𝑐)) |
346 | 338 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) →
(0g‘(𝑅
↾s 𝑈)) =
(0g‘𝑅)) |
347 | 345, 346 | eqeq12d 2756 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) → ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) ↔ (𝑙(.g‘𝑅)𝑐) = (0g‘𝑅))) |
348 | 347 | imbi1d 341 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) ∧ 𝑙 ∈ ℕ0) → (((𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙) ↔ ((𝑙(.g‘𝑅)𝑐) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
349 | 348 | ralbidva 3182 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (∀𝑙 ∈ ℕ0 ((𝑙(.g‘(𝑅 ↾s 𝑈))𝑐) = (0g‘(𝑅 ↾s 𝑈)) → 𝐾 ∥ 𝑙) ↔ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑐) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
350 | 340, 349 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑐) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) |
351 | 332, 339,
350 | 3jca 1128 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑐 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑐) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑐) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
352 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑅 ∈ CMnd) |
353 | 352, 320,
6 | isprimroot 42050 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → (𝑐 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑐 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑐) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑐) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
354 | 351, 353 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) → 𝑐 ∈ (𝑅 PrimRoots 𝐾)) |
355 | 354 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑐 ∈ ((𝑅 ↾s 𝑈) PrimRoots 𝐾) → 𝑐 ∈ (𝑅 PrimRoots 𝐾))) |
356 | 355 | ssrdv 4014 |
. . 3
⊢ (𝜑 → ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ⊆ (𝑅 PrimRoots 𝐾)) |
357 | 318, 356 | eqssd 4026 |
. 2
⊢ (𝜑 → (𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾)) |
358 | 259, 313 | jca 511 |
. . 3
⊢ (𝜑 → ((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑅 ↾s 𝑈) ∈ CMnd)) |
359 | | isabl 19826 |
. . 3
⊢ ((𝑅 ↾s 𝑈) ∈ Abel ↔ ((𝑅 ↾s 𝑈) ∈ Grp ∧ (𝑅 ↾s 𝑈) ∈ CMnd)) |
360 | 358, 359 | sylibr 234 |
. 2
⊢ (𝜑 → (𝑅 ↾s 𝑈) ∈ Abel) |
361 | 357, 360 | jca 511 |
1
⊢ (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅 ↾s 𝑈) PrimRoots 𝐾) ∧ (𝑅 ↾s 𝑈) ∈ Abel)) |