MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zornn0g Structured version   Visualization version   GIF version

Theorem zornn0g 10307
Description: Variant of Zorn's lemma zorng 10306 in which , the union of the empty chain, is not required to be an element of 𝐴. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zornn0g ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem zornn0g
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴)) → 𝐴 ≠ ∅)
2 simp1 1136 . . . 4 ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴)) → 𝐴 ∈ dom card)
3 snfi 8869 . . . . 5 {∅} ∈ Fin
4 finnum 9750 . . . . 5 ({∅} ∈ Fin → {∅} ∈ dom card)
53, 4ax-mp 5 . . . 4 {∅} ∈ dom card
6 unnum 9998 . . . 4 ((𝐴 ∈ dom card ∧ {∅} ∈ dom card) → (𝐴 ∪ {∅}) ∈ dom card)
72, 5, 6sylancl 587 . . 3 ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴)) → (𝐴 ∪ {∅}) ∈ dom card)
8 uncom 4093 . . . . . . . . 9 (𝐴 ∪ {∅}) = ({∅} ∪ 𝐴)
98sseq2i 3955 . . . . . . . 8 (𝑤 ⊆ (𝐴 ∪ {∅}) ↔ 𝑤 ⊆ ({∅} ∪ 𝐴))
10 ssundif 4424 . . . . . . . 8 (𝑤 ⊆ ({∅} ∪ 𝐴) ↔ (𝑤 ∖ {∅}) ⊆ 𝐴)
119, 10bitri 275 . . . . . . 7 (𝑤 ⊆ (𝐴 ∪ {∅}) ↔ (𝑤 ∖ {∅}) ⊆ 𝐴)
12 difss 4072 . . . . . . . . 9 (𝑤 ∖ {∅}) ⊆ 𝑤
13 soss 5534 . . . . . . . . 9 ((𝑤 ∖ {∅}) ⊆ 𝑤 → ( [] Or 𝑤 → [] Or (𝑤 ∖ {∅})))
1412, 13ax-mp 5 . . . . . . . 8 ( [] Or 𝑤 → [] Or (𝑤 ∖ {∅}))
15 ssdif0 4303 . . . . . . . . . . 11 (𝑤 ⊆ {∅} ↔ (𝑤 ∖ {∅}) = ∅)
16 uni0b 4873 . . . . . . . . . . . . 13 ( 𝑤 = ∅ ↔ 𝑤 ⊆ {∅})
1716biimpri 227 . . . . . . . . . . . 12 (𝑤 ⊆ {∅} → 𝑤 = ∅)
1817eleq1d 2821 . . . . . . . . . . 11 (𝑤 ⊆ {∅} → ( 𝑤 ∈ (𝐴 ∪ {∅}) ↔ ∅ ∈ (𝐴 ∪ {∅})))
1915, 18sylbir 234 . . . . . . . . . 10 ((𝑤 ∖ {∅}) = ∅ → ( 𝑤 ∈ (𝐴 ∪ {∅}) ↔ ∅ ∈ (𝐴 ∪ {∅})))
2019imbi2d 341 . . . . . . . . 9 ((𝑤 ∖ {∅}) = ∅ → ((∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → 𝑤 ∈ (𝐴 ∪ {∅})) ↔ (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → ∅ ∈ (𝐴 ∪ {∅}))))
21 vex 3441 . . . . . . . . . . . . . . 15 𝑤 ∈ V
2221difexi 5261 . . . . . . . . . . . . . 14 (𝑤 ∖ {∅}) ∈ V
23 sseq1 3951 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑤 ∖ {∅}) → (𝑧𝐴 ↔ (𝑤 ∖ {∅}) ⊆ 𝐴))
24 neeq1 3004 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑤 ∖ {∅}) → (𝑧 ≠ ∅ ↔ (𝑤 ∖ {∅}) ≠ ∅))
25 soeq2 5536 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑤 ∖ {∅}) → ( [] Or 𝑧 ↔ [] Or (𝑤 ∖ {∅})))
2623, 24, 253anbi123d 1436 . . . . . . . . . . . . . . 15 (𝑧 = (𝑤 ∖ {∅}) → ((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) ↔ ((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ (𝑤 ∖ {∅}) ≠ ∅ ∧ [] Or (𝑤 ∖ {∅}))))
27 unieq 4855 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑤 ∖ {∅}) → 𝑧 = (𝑤 ∖ {∅}))
2827eleq1d 2821 . . . . . . . . . . . . . . 15 (𝑧 = (𝑤 ∖ {∅}) → ( 𝑧𝐴 (𝑤 ∖ {∅}) ∈ 𝐴))
2926, 28imbi12d 345 . . . . . . . . . . . . . 14 (𝑧 = (𝑤 ∖ {∅}) → (((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) ↔ (((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ (𝑤 ∖ {∅}) ≠ ∅ ∧ [] Or (𝑤 ∖ {∅})) → (𝑤 ∖ {∅}) ∈ 𝐴)))
3022, 29spcv 3549 . . . . . . . . . . . . 13 (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → (((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ (𝑤 ∖ {∅}) ≠ ∅ ∧ [] Or (𝑤 ∖ {∅})) → (𝑤 ∖ {∅}) ∈ 𝐴))
3130com12 32 . . . . . . . . . . . 12 (((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ (𝑤 ∖ {∅}) ≠ ∅ ∧ [] Or (𝑤 ∖ {∅})) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → (𝑤 ∖ {∅}) ∈ 𝐴))
32313expa 1118 . . . . . . . . . . 11 ((((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ (𝑤 ∖ {∅}) ≠ ∅) ∧ [] Or (𝑤 ∖ {∅})) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → (𝑤 ∖ {∅}) ∈ 𝐴))
3332an32s 650 . . . . . . . . . 10 ((((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ [] Or (𝑤 ∖ {∅})) ∧ (𝑤 ∖ {∅}) ≠ ∅) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → (𝑤 ∖ {∅}) ∈ 𝐴))
34 unidif0 5291 . . . . . . . . . . . 12 (𝑤 ∖ {∅}) = 𝑤
3534eleq1i 2827 . . . . . . . . . . 11 ( (𝑤 ∖ {∅}) ∈ 𝐴 𝑤𝐴)
36 elun1 4116 . . . . . . . . . . 11 ( 𝑤𝐴 𝑤 ∈ (𝐴 ∪ {∅}))
3735, 36sylbi 216 . . . . . . . . . 10 ( (𝑤 ∖ {∅}) ∈ 𝐴 𝑤 ∈ (𝐴 ∪ {∅}))
3833, 37syl6 35 . . . . . . . . 9 ((((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ [] Or (𝑤 ∖ {∅})) ∧ (𝑤 ∖ {∅}) ≠ ∅) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → 𝑤 ∈ (𝐴 ∪ {∅})))
39 0ex 5240 . . . . . . . . . . . 12 ∅ ∈ V
4039snid 4601 . . . . . . . . . . 11 ∅ ∈ {∅}
41 elun2 4117 . . . . . . . . . . 11 (∅ ∈ {∅} → ∅ ∈ (𝐴 ∪ {∅}))
4240, 41ax-mp 5 . . . . . . . . . 10 ∅ ∈ (𝐴 ∪ {∅})
43422a1i 12 . . . . . . . . 9 (((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ [] Or (𝑤 ∖ {∅})) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → ∅ ∈ (𝐴 ∪ {∅})))
4420, 38, 43pm2.61ne 3028 . . . . . . . 8 (((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ [] Or (𝑤 ∖ {∅})) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → 𝑤 ∈ (𝐴 ∪ {∅})))
4514, 44sylan2 594 . . . . . . 7 (((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ [] Or 𝑤) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → 𝑤 ∈ (𝐴 ∪ {∅})))
4611, 45sylanb 582 . . . . . 6 ((𝑤 ⊆ (𝐴 ∪ {∅}) ∧ [] Or 𝑤) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → 𝑤 ∈ (𝐴 ∪ {∅})))
4746com12 32 . . . . 5 (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → ((𝑤 ⊆ (𝐴 ∪ {∅}) ∧ [] Or 𝑤) → 𝑤 ∈ (𝐴 ∪ {∅})))
4847alrimiv 1928 . . . 4 (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → ∀𝑤((𝑤 ⊆ (𝐴 ∪ {∅}) ∧ [] Or 𝑤) → 𝑤 ∈ (𝐴 ∪ {∅})))
49483ad2ant3 1135 . . 3 ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴)) → ∀𝑤((𝑤 ⊆ (𝐴 ∪ {∅}) ∧ [] Or 𝑤) → 𝑤 ∈ (𝐴 ∪ {∅})))
50 zorng 10306 . . 3 (((𝐴 ∪ {∅}) ∈ dom card ∧ ∀𝑤((𝑤 ⊆ (𝐴 ∪ {∅}) ∧ [] Or 𝑤) → 𝑤 ∈ (𝐴 ∪ {∅}))) → ∃𝑥 ∈ (𝐴 ∪ {∅})∀𝑦 ∈ (𝐴 ∪ {∅}) ¬ 𝑥𝑦)
517, 49, 50syl2anc 585 . 2 ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥 ∈ (𝐴 ∪ {∅})∀𝑦 ∈ (𝐴 ∪ {∅}) ¬ 𝑥𝑦)
52 ssun1 4112 . . . . 5 𝐴 ⊆ (𝐴 ∪ {∅})
53 ssralv 3992 . . . . 5 (𝐴 ⊆ (𝐴 ∪ {∅}) → (∀𝑦 ∈ (𝐴 ∪ {∅}) ¬ 𝑥𝑦 → ∀𝑦𝐴 ¬ 𝑥𝑦))
5452, 53ax-mp 5 . . . 4 (∀𝑦 ∈ (𝐴 ∪ {∅}) ¬ 𝑥𝑦 → ∀𝑦𝐴 ¬ 𝑥𝑦)
5554reximi 3084 . . 3 (∃𝑥 ∈ (𝐴 ∪ {∅})∀𝑦 ∈ (𝐴 ∪ {∅}) ¬ 𝑥𝑦 → ∃𝑥 ∈ (𝐴 ∪ {∅})∀𝑦𝐴 ¬ 𝑥𝑦)
56 rexun 4130 . . . 4 (∃𝑥 ∈ (𝐴 ∪ {∅})∀𝑦𝐴 ¬ 𝑥𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ∨ ∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦))
57 simpr 486 . . . . 5 ((𝐴 ≠ ∅ ∧ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
58 simpr 486 . . . . . 6 ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦) → ∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦)
59 psseq1 4028 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑥𝑦 ↔ ∅ ⊊ 𝑦))
60 0pss 4384 . . . . . . . . . . . . 13 (∅ ⊊ 𝑦𝑦 ≠ ∅)
6159, 60bitrdi 287 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑥𝑦𝑦 ≠ ∅))
6261notbid 318 . . . . . . . . . . 11 (𝑥 = ∅ → (¬ 𝑥𝑦 ↔ ¬ 𝑦 ≠ ∅))
63 nne 2945 . . . . . . . . . . 11 𝑦 ≠ ∅ ↔ 𝑦 = ∅)
6462, 63bitrdi 287 . . . . . . . . . 10 (𝑥 = ∅ → (¬ 𝑥𝑦𝑦 = ∅))
6564ralbidv 3171 . . . . . . . . 9 (𝑥 = ∅ → (∀𝑦𝐴 ¬ 𝑥𝑦 ↔ ∀𝑦𝐴 𝑦 = ∅))
6639, 65rexsn 4622 . . . . . . . 8 (∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦 ↔ ∀𝑦𝐴 𝑦 = ∅)
67 eqsn 4768 . . . . . . . . 9 (𝐴 ≠ ∅ → (𝐴 = {∅} ↔ ∀𝑦𝐴 𝑦 = ∅))
6867biimpar 479 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑦 = ∅) → 𝐴 = {∅})
6966, 68sylan2b 595 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦) → 𝐴 = {∅})
7069rexeqdv 3361 . . . . . 6 ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦) → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ↔ ∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦))
7158, 70mpbird 257 . . . . 5 ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
7257, 71jaodan 956 . . . 4 ((𝐴 ≠ ∅ ∧ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ∨ ∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
7356, 72sylan2b 595 . . 3 ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ (𝐴 ∪ {∅})∀𝑦𝐴 ¬ 𝑥𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
7455, 73sylan2 594 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ (𝐴 ∪ {∅})∀𝑦 ∈ (𝐴 ∪ {∅}) ¬ 𝑥𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
751, 51, 74syl2anc 585 1 ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  w3a 1087  wal 1537   = wceq 1539  wcel 2104  wne 2941  wral 3062  wrex 3071  cdif 3889  cun 3890  wss 3892  wpss 3893  c0 4262  {csn 4565   cuni 4844   Or wor 5513  dom cdm 5600   [] crpss 7607  Fincfn 8764  cardccrd 9737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-rpss 7608  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-oadd 8332  df-er 8529  df-en 8765  df-dom 8766  df-fin 8768  df-dju 9703  df-card 9741
This theorem is referenced by:  zornn0  10310  pgpfac1lem5  19727  lbsextlem4  20468  filssufilg  23107
  Copyright terms: Public domain W3C validator