MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zornn0g Structured version   Visualization version   GIF version

Theorem zornn0g 10524
Description: Variant of Zorn's lemma zorng 10523 in which , the union of the empty chain, is not required to be an element of 𝐴. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zornn0g ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem zornn0g
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴)) → 𝐴 ≠ ∅)
2 simp1 1136 . . . 4 ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴)) → 𝐴 ∈ dom card)
3 snfi 9062 . . . . 5 {∅} ∈ Fin
4 finnum 9967 . . . . 5 ({∅} ∈ Fin → {∅} ∈ dom card)
53, 4ax-mp 5 . . . 4 {∅} ∈ dom card
6 unnum 10216 . . . 4 ((𝐴 ∈ dom card ∧ {∅} ∈ dom card) → (𝐴 ∪ {∅}) ∈ dom card)
72, 5, 6sylancl 586 . . 3 ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴)) → (𝐴 ∪ {∅}) ∈ dom card)
8 uncom 4138 . . . . . . . . 9 (𝐴 ∪ {∅}) = ({∅} ∪ 𝐴)
98sseq2i 3993 . . . . . . . 8 (𝑤 ⊆ (𝐴 ∪ {∅}) ↔ 𝑤 ⊆ ({∅} ∪ 𝐴))
10 ssundif 4468 . . . . . . . 8 (𝑤 ⊆ ({∅} ∪ 𝐴) ↔ (𝑤 ∖ {∅}) ⊆ 𝐴)
119, 10bitri 275 . . . . . . 7 (𝑤 ⊆ (𝐴 ∪ {∅}) ↔ (𝑤 ∖ {∅}) ⊆ 𝐴)
12 difss 4116 . . . . . . . . 9 (𝑤 ∖ {∅}) ⊆ 𝑤
13 soss 5586 . . . . . . . . 9 ((𝑤 ∖ {∅}) ⊆ 𝑤 → ( [] Or 𝑤 → [] Or (𝑤 ∖ {∅})))
1412, 13ax-mp 5 . . . . . . . 8 ( [] Or 𝑤 → [] Or (𝑤 ∖ {∅}))
15 ssdif0 4346 . . . . . . . . . . 11 (𝑤 ⊆ {∅} ↔ (𝑤 ∖ {∅}) = ∅)
16 uni0b 4914 . . . . . . . . . . . . 13 ( 𝑤 = ∅ ↔ 𝑤 ⊆ {∅})
1716biimpri 228 . . . . . . . . . . . 12 (𝑤 ⊆ {∅} → 𝑤 = ∅)
1817eleq1d 2820 . . . . . . . . . . 11 (𝑤 ⊆ {∅} → ( 𝑤 ∈ (𝐴 ∪ {∅}) ↔ ∅ ∈ (𝐴 ∪ {∅})))
1915, 18sylbir 235 . . . . . . . . . 10 ((𝑤 ∖ {∅}) = ∅ → ( 𝑤 ∈ (𝐴 ∪ {∅}) ↔ ∅ ∈ (𝐴 ∪ {∅})))
2019imbi2d 340 . . . . . . . . 9 ((𝑤 ∖ {∅}) = ∅ → ((∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → 𝑤 ∈ (𝐴 ∪ {∅})) ↔ (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → ∅ ∈ (𝐴 ∪ {∅}))))
21 vex 3468 . . . . . . . . . . . . . . 15 𝑤 ∈ V
2221difexi 5305 . . . . . . . . . . . . . 14 (𝑤 ∖ {∅}) ∈ V
23 sseq1 3989 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑤 ∖ {∅}) → (𝑧𝐴 ↔ (𝑤 ∖ {∅}) ⊆ 𝐴))
24 neeq1 2995 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑤 ∖ {∅}) → (𝑧 ≠ ∅ ↔ (𝑤 ∖ {∅}) ≠ ∅))
25 soeq2 5588 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑤 ∖ {∅}) → ( [] Or 𝑧 ↔ [] Or (𝑤 ∖ {∅})))
2623, 24, 253anbi123d 1438 . . . . . . . . . . . . . . 15 (𝑧 = (𝑤 ∖ {∅}) → ((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) ↔ ((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ (𝑤 ∖ {∅}) ≠ ∅ ∧ [] Or (𝑤 ∖ {∅}))))
27 unieq 4899 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑤 ∖ {∅}) → 𝑧 = (𝑤 ∖ {∅}))
2827eleq1d 2820 . . . . . . . . . . . . . . 15 (𝑧 = (𝑤 ∖ {∅}) → ( 𝑧𝐴 (𝑤 ∖ {∅}) ∈ 𝐴))
2926, 28imbi12d 344 . . . . . . . . . . . . . 14 (𝑧 = (𝑤 ∖ {∅}) → (((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) ↔ (((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ (𝑤 ∖ {∅}) ≠ ∅ ∧ [] Or (𝑤 ∖ {∅})) → (𝑤 ∖ {∅}) ∈ 𝐴)))
3022, 29spcv 3589 . . . . . . . . . . . . 13 (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → (((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ (𝑤 ∖ {∅}) ≠ ∅ ∧ [] Or (𝑤 ∖ {∅})) → (𝑤 ∖ {∅}) ∈ 𝐴))
3130com12 32 . . . . . . . . . . . 12 (((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ (𝑤 ∖ {∅}) ≠ ∅ ∧ [] Or (𝑤 ∖ {∅})) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → (𝑤 ∖ {∅}) ∈ 𝐴))
32313expa 1118 . . . . . . . . . . 11 ((((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ (𝑤 ∖ {∅}) ≠ ∅) ∧ [] Or (𝑤 ∖ {∅})) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → (𝑤 ∖ {∅}) ∈ 𝐴))
3332an32s 652 . . . . . . . . . 10 ((((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ [] Or (𝑤 ∖ {∅})) ∧ (𝑤 ∖ {∅}) ≠ ∅) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → (𝑤 ∖ {∅}) ∈ 𝐴))
34 unidif0 5335 . . . . . . . . . . . 12 (𝑤 ∖ {∅}) = 𝑤
3534eleq1i 2826 . . . . . . . . . . 11 ( (𝑤 ∖ {∅}) ∈ 𝐴 𝑤𝐴)
36 elun1 4162 . . . . . . . . . . 11 ( 𝑤𝐴 𝑤 ∈ (𝐴 ∪ {∅}))
3735, 36sylbi 217 . . . . . . . . . 10 ( (𝑤 ∖ {∅}) ∈ 𝐴 𝑤 ∈ (𝐴 ∪ {∅}))
3833, 37syl6 35 . . . . . . . . 9 ((((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ [] Or (𝑤 ∖ {∅})) ∧ (𝑤 ∖ {∅}) ≠ ∅) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → 𝑤 ∈ (𝐴 ∪ {∅})))
39 0ex 5282 . . . . . . . . . . . 12 ∅ ∈ V
4039snid 4643 . . . . . . . . . . 11 ∅ ∈ {∅}
41 elun2 4163 . . . . . . . . . . 11 (∅ ∈ {∅} → ∅ ∈ (𝐴 ∪ {∅}))
4240, 41ax-mp 5 . . . . . . . . . 10 ∅ ∈ (𝐴 ∪ {∅})
43422a1i 12 . . . . . . . . 9 (((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ [] Or (𝑤 ∖ {∅})) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → ∅ ∈ (𝐴 ∪ {∅})))
4420, 38, 43pm2.61ne 3018 . . . . . . . 8 (((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ [] Or (𝑤 ∖ {∅})) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → 𝑤 ∈ (𝐴 ∪ {∅})))
4514, 44sylan2 593 . . . . . . 7 (((𝑤 ∖ {∅}) ⊆ 𝐴 ∧ [] Or 𝑤) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → 𝑤 ∈ (𝐴 ∪ {∅})))
4611, 45sylanb 581 . . . . . 6 ((𝑤 ⊆ (𝐴 ∪ {∅}) ∧ [] Or 𝑤) → (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → 𝑤 ∈ (𝐴 ∪ {∅})))
4746com12 32 . . . . 5 (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → ((𝑤 ⊆ (𝐴 ∪ {∅}) ∧ [] Or 𝑤) → 𝑤 ∈ (𝐴 ∪ {∅})))
4847alrimiv 1927 . . . 4 (∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴) → ∀𝑤((𝑤 ⊆ (𝐴 ∪ {∅}) ∧ [] Or 𝑤) → 𝑤 ∈ (𝐴 ∪ {∅})))
49483ad2ant3 1135 . . 3 ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴)) → ∀𝑤((𝑤 ⊆ (𝐴 ∪ {∅}) ∧ [] Or 𝑤) → 𝑤 ∈ (𝐴 ∪ {∅})))
50 zorng 10523 . . 3 (((𝐴 ∪ {∅}) ∈ dom card ∧ ∀𝑤((𝑤 ⊆ (𝐴 ∪ {∅}) ∧ [] Or 𝑤) → 𝑤 ∈ (𝐴 ∪ {∅}))) → ∃𝑥 ∈ (𝐴 ∪ {∅})∀𝑦 ∈ (𝐴 ∪ {∅}) ¬ 𝑥𝑦)
517, 49, 50syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥 ∈ (𝐴 ∪ {∅})∀𝑦 ∈ (𝐴 ∪ {∅}) ¬ 𝑥𝑦)
52 ssun1 4158 . . . . 5 𝐴 ⊆ (𝐴 ∪ {∅})
53 ssralv 4032 . . . . 5 (𝐴 ⊆ (𝐴 ∪ {∅}) → (∀𝑦 ∈ (𝐴 ∪ {∅}) ¬ 𝑥𝑦 → ∀𝑦𝐴 ¬ 𝑥𝑦))
5452, 53ax-mp 5 . . . 4 (∀𝑦 ∈ (𝐴 ∪ {∅}) ¬ 𝑥𝑦 → ∀𝑦𝐴 ¬ 𝑥𝑦)
5554reximi 3075 . . 3 (∃𝑥 ∈ (𝐴 ∪ {∅})∀𝑦 ∈ (𝐴 ∪ {∅}) ¬ 𝑥𝑦 → ∃𝑥 ∈ (𝐴 ∪ {∅})∀𝑦𝐴 ¬ 𝑥𝑦)
56 rexun 4176 . . . 4 (∃𝑥 ∈ (𝐴 ∪ {∅})∀𝑦𝐴 ¬ 𝑥𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ∨ ∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦))
57 simpr 484 . . . . 5 ((𝐴 ≠ ∅ ∧ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
58 simpr 484 . . . . . 6 ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦) → ∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦)
59 psseq1 4070 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑥𝑦 ↔ ∅ ⊊ 𝑦))
60 0pss 4427 . . . . . . . . . . . 12 (∅ ⊊ 𝑦𝑦 ≠ ∅)
6159, 60bitrdi 287 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥𝑦𝑦 ≠ ∅))
6261notbid 318 . . . . . . . . . 10 (𝑥 = ∅ → (¬ 𝑥𝑦 ↔ ¬ 𝑦 ≠ ∅))
63 nne 2937 . . . . . . . . . 10 𝑦 ≠ ∅ ↔ 𝑦 = ∅)
6462, 63bitrdi 287 . . . . . . . . 9 (𝑥 = ∅ → (¬ 𝑥𝑦𝑦 = ∅))
6564ralbidv 3164 . . . . . . . 8 (𝑥 = ∅ → (∀𝑦𝐴 ¬ 𝑥𝑦 ↔ ∀𝑦𝐴 𝑦 = ∅))
6639, 65rexsn 4663 . . . . . . 7 (∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦 ↔ ∀𝑦𝐴 𝑦 = ∅)
67 eqsn 4810 . . . . . . . 8 (𝐴 ≠ ∅ → (𝐴 = {∅} ↔ ∀𝑦𝐴 𝑦 = ∅))
6867biimpar 477 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑦 = ∅) → 𝐴 = {∅})
6966, 68sylan2b 594 . . . . . 6 ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦) → 𝐴 = {∅})
7058, 69rexeqtrrdv 3314 . . . . 5 ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
7157, 70jaodan 959 . . . 4 ((𝐴 ≠ ∅ ∧ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ∨ ∃𝑥 ∈ {∅}∀𝑦𝐴 ¬ 𝑥𝑦)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
7256, 71sylan2b 594 . . 3 ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ (𝐴 ∪ {∅})∀𝑦𝐴 ¬ 𝑥𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
7355, 72sylan2 593 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ (𝐴 ∪ {∅})∀𝑦 ∈ (𝐴 ∪ {∅}) ¬ 𝑥𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
741, 51, 73syl2anc 584 1 ((𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑧((𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  cdif 3928  cun 3929  wss 3931  wpss 3932  c0 4313  {csn 4606   cuni 4888   Or wor 5565  dom cdm 5659   [] crpss 7721  Fincfn 8964  cardccrd 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-rpss 7722  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-fin 8968  df-dju 9920  df-card 9958
This theorem is referenced by:  zornn0  10527  pgpfac1lem5  20067  lbsextlem4  21127  filssufilg  23854
  Copyright terms: Public domain W3C validator