MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcctbss Structured version   Visualization version   GIF version

Theorem 2ndcctbss 22950
Description: If a topology is second-countable, every base has a countable subset which is a base. Exercise 16B2 in Willard. (Contributed by Jeff Hankins, 28-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
2ndcctbss.1 𝐽 = (topGenβ€˜π΅)
2ndcctbss.2 𝑆 = {βŸ¨π‘’, π‘£βŸ© ∣ (𝑒 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ βˆƒπ‘€ ∈ 𝐡 (𝑒 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑣))}
Assertion
Ref Expression
2ndcctbss ((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) β†’ βˆƒπ‘ ∈ TopBases (𝑏 β‰Ό Ο‰ ∧ 𝑏 βŠ† 𝐡 ∧ 𝐽 = (topGenβ€˜π‘)))
Distinct variable groups:   𝑏,𝑐,𝑒,𝑣,𝑀,𝐡   𝐽,𝑏,𝑐
Allowed substitution hints:   𝑆(𝑀,𝑣,𝑒,𝑏,𝑐)   𝐽(𝑀,𝑣,𝑒)

Proof of Theorem 2ndcctbss
Dummy variables 𝑑 𝑓 π‘š 𝑛 π‘œ 𝑑 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . 3 ((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) β†’ 𝐽 ∈ 2ndΟ‰)
2 is2ndc 22941 . . 3 (𝐽 ∈ 2ndΟ‰ ↔ βˆƒπ‘ ∈ TopBases (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))
31, 2sylib 217 . 2 ((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) β†’ βˆƒπ‘ ∈ TopBases (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))
4 vex 3478 . . . . . . 7 𝑐 ∈ V
54, 4xpex 7736 . . . . . 6 (𝑐 Γ— 𝑐) ∈ V
6 3simpa 1148 . . . . . . . 8 ((𝑒 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ βˆƒπ‘€ ∈ 𝐡 (𝑒 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑣)) β†’ (𝑒 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐))
76ssopab2i 5549 . . . . . . 7 {βŸ¨π‘’, π‘£βŸ© ∣ (𝑒 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ βˆƒπ‘€ ∈ 𝐡 (𝑒 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑣))} βŠ† {βŸ¨π‘’, π‘£βŸ© ∣ (𝑒 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐)}
8 2ndcctbss.2 . . . . . . 7 𝑆 = {βŸ¨π‘’, π‘£βŸ© ∣ (𝑒 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ βˆƒπ‘€ ∈ 𝐡 (𝑒 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑣))}
9 df-xp 5681 . . . . . . 7 (𝑐 Γ— 𝑐) = {βŸ¨π‘’, π‘£βŸ© ∣ (𝑒 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐)}
107, 8, 93sstr4i 4024 . . . . . 6 𝑆 βŠ† (𝑐 Γ— 𝑐)
11 ssdomg 8992 . . . . . 6 ((𝑐 Γ— 𝑐) ∈ V β†’ (𝑆 βŠ† (𝑐 Γ— 𝑐) β†’ 𝑆 β‰Ό (𝑐 Γ— 𝑐)))
125, 10, 11mp2 9 . . . . 5 𝑆 β‰Ό (𝑐 Γ— 𝑐)
134xpdom1 9067 . . . . . . . . 9 (𝑐 β‰Ό Ο‰ β†’ (𝑐 Γ— 𝑐) β‰Ό (Ο‰ Γ— 𝑐))
14 omex 9634 . . . . . . . . . 10 Ο‰ ∈ V
1514xpdom2 9063 . . . . . . . . 9 (𝑐 β‰Ό Ο‰ β†’ (Ο‰ Γ— 𝑐) β‰Ό (Ο‰ Γ— Ο‰))
16 domtr 8999 . . . . . . . . 9 (((𝑐 Γ— 𝑐) β‰Ό (Ο‰ Γ— 𝑐) ∧ (Ο‰ Γ— 𝑐) β‰Ό (Ο‰ Γ— Ο‰)) β†’ (𝑐 Γ— 𝑐) β‰Ό (Ο‰ Γ— Ο‰))
1713, 15, 16syl2anc 584 . . . . . . . 8 (𝑐 β‰Ό Ο‰ β†’ (𝑐 Γ— 𝑐) β‰Ό (Ο‰ Γ— Ο‰))
18 xpomen 10006 . . . . . . . 8 (Ο‰ Γ— Ο‰) β‰ˆ Ο‰
19 domentr 9005 . . . . . . . 8 (((𝑐 Γ— 𝑐) β‰Ό (Ο‰ Γ— Ο‰) ∧ (Ο‰ Γ— Ο‰) β‰ˆ Ο‰) β†’ (𝑐 Γ— 𝑐) β‰Ό Ο‰)
2017, 18, 19sylancl 586 . . . . . . 7 (𝑐 β‰Ό Ο‰ β†’ (𝑐 Γ— 𝑐) β‰Ό Ο‰)
2120adantr 481 . . . . . 6 ((𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽) β†’ (𝑐 Γ— 𝑐) β‰Ό Ο‰)
2221ad2antll 727 . . . . 5 (((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) β†’ (𝑐 Γ— 𝑐) β‰Ό Ο‰)
23 domtr 8999 . . . . 5 ((𝑆 β‰Ό (𝑐 Γ— 𝑐) ∧ (𝑐 Γ— 𝑐) β‰Ό Ο‰) β†’ 𝑆 β‰Ό Ο‰)
2412, 22, 23sylancr 587 . . . 4 (((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) β†’ 𝑆 β‰Ό Ο‰)
258relopabiv 5818 . . . . . . . . 9 Rel 𝑆
26 simpr 485 . . . . . . . . 9 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝑆)
27 1st2nd 8021 . . . . . . . . 9 ((Rel 𝑆 ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ = ⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩)
2825, 26, 27sylancr 587 . . . . . . . 8 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ = ⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩)
2928, 26eqeltrrd 2834 . . . . . . 7 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ π‘₯ ∈ 𝑆) β†’ ⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩ ∈ 𝑆)
30 df-br 5148 . . . . . . . . 9 ((1st β€˜π‘₯)𝑆(2nd β€˜π‘₯) ↔ ⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩ ∈ 𝑆)
31 fvex 6901 . . . . . . . . . 10 (1st β€˜π‘₯) ∈ V
32 fvex 6901 . . . . . . . . . 10 (2nd β€˜π‘₯) ∈ V
33 simpl 483 . . . . . . . . . . . 12 ((𝑒 = (1st β€˜π‘₯) ∧ 𝑣 = (2nd β€˜π‘₯)) β†’ 𝑒 = (1st β€˜π‘₯))
3433eleq1d 2818 . . . . . . . . . . 11 ((𝑒 = (1st β€˜π‘₯) ∧ 𝑣 = (2nd β€˜π‘₯)) β†’ (𝑒 ∈ 𝑐 ↔ (1st β€˜π‘₯) ∈ 𝑐))
35 simpr 485 . . . . . . . . . . . 12 ((𝑒 = (1st β€˜π‘₯) ∧ 𝑣 = (2nd β€˜π‘₯)) β†’ 𝑣 = (2nd β€˜π‘₯))
3635eleq1d 2818 . . . . . . . . . . 11 ((𝑒 = (1st β€˜π‘₯) ∧ 𝑣 = (2nd β€˜π‘₯)) β†’ (𝑣 ∈ 𝑐 ↔ (2nd β€˜π‘₯) ∈ 𝑐))
37 sseq1 4006 . . . . . . . . . . . . 13 (𝑒 = (1st β€˜π‘₯) β†’ (𝑒 βŠ† 𝑀 ↔ (1st β€˜π‘₯) βŠ† 𝑀))
38 sseq2 4007 . . . . . . . . . . . . 13 (𝑣 = (2nd β€˜π‘₯) β†’ (𝑀 βŠ† 𝑣 ↔ 𝑀 βŠ† (2nd β€˜π‘₯)))
3937, 38bi2anan9 637 . . . . . . . . . . . 12 ((𝑒 = (1st β€˜π‘₯) ∧ 𝑣 = (2nd β€˜π‘₯)) β†’ ((𝑒 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑣) ↔ ((1st β€˜π‘₯) βŠ† 𝑀 ∧ 𝑀 βŠ† (2nd β€˜π‘₯))))
4039rexbidv 3178 . . . . . . . . . . 11 ((𝑒 = (1st β€˜π‘₯) ∧ 𝑣 = (2nd β€˜π‘₯)) β†’ (βˆƒπ‘€ ∈ 𝐡 (𝑒 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑣) ↔ βˆƒπ‘€ ∈ 𝐡 ((1st β€˜π‘₯) βŠ† 𝑀 ∧ 𝑀 βŠ† (2nd β€˜π‘₯))))
4134, 36, 403anbi123d 1436 . . . . . . . . . 10 ((𝑒 = (1st β€˜π‘₯) ∧ 𝑣 = (2nd β€˜π‘₯)) β†’ ((𝑒 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ βˆƒπ‘€ ∈ 𝐡 (𝑒 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑣)) ↔ ((1st β€˜π‘₯) ∈ 𝑐 ∧ (2nd β€˜π‘₯) ∈ 𝑐 ∧ βˆƒπ‘€ ∈ 𝐡 ((1st β€˜π‘₯) βŠ† 𝑀 ∧ 𝑀 βŠ† (2nd β€˜π‘₯)))))
4231, 32, 41, 8braba 5536 . . . . . . . . 9 ((1st β€˜π‘₯)𝑆(2nd β€˜π‘₯) ↔ ((1st β€˜π‘₯) ∈ 𝑐 ∧ (2nd β€˜π‘₯) ∈ 𝑐 ∧ βˆƒπ‘€ ∈ 𝐡 ((1st β€˜π‘₯) βŠ† 𝑀 ∧ 𝑀 βŠ† (2nd β€˜π‘₯))))
4330, 42bitr3i 276 . . . . . . . 8 (⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩ ∈ 𝑆 ↔ ((1st β€˜π‘₯) ∈ 𝑐 ∧ (2nd β€˜π‘₯) ∈ 𝑐 ∧ βˆƒπ‘€ ∈ 𝐡 ((1st β€˜π‘₯) βŠ† 𝑀 ∧ 𝑀 βŠ† (2nd β€˜π‘₯))))
4443simp3bi 1147 . . . . . . 7 (⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩ ∈ 𝑆 β†’ βˆƒπ‘€ ∈ 𝐡 ((1st β€˜π‘₯) βŠ† 𝑀 ∧ 𝑀 βŠ† (2nd β€˜π‘₯)))
4529, 44syl 17 . . . . . 6 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ π‘₯ ∈ 𝑆) β†’ βˆƒπ‘€ ∈ 𝐡 ((1st β€˜π‘₯) βŠ† 𝑀 ∧ 𝑀 βŠ† (2nd β€˜π‘₯)))
46 fvi 6964 . . . . . . . 8 (𝐡 ∈ TopBases β†’ ( I β€˜π΅) = 𝐡)
4746ad3antrrr 728 . . . . . . 7 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ π‘₯ ∈ 𝑆) β†’ ( I β€˜π΅) = 𝐡)
4847rexeqdv 3326 . . . . . 6 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ π‘₯ ∈ 𝑆) β†’ (βˆƒπ‘€ ∈ ( I β€˜π΅)((1st β€˜π‘₯) βŠ† 𝑀 ∧ 𝑀 βŠ† (2nd β€˜π‘₯)) ↔ βˆƒπ‘€ ∈ 𝐡 ((1st β€˜π‘₯) βŠ† 𝑀 ∧ 𝑀 βŠ† (2nd β€˜π‘₯))))
4945, 48mpbird 256 . . . . 5 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ π‘₯ ∈ 𝑆) β†’ βˆƒπ‘€ ∈ ( I β€˜π΅)((1st β€˜π‘₯) βŠ† 𝑀 ∧ 𝑀 βŠ† (2nd β€˜π‘₯)))
5049ralrimiva 3146 . . . 4 (((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) β†’ βˆ€π‘₯ ∈ 𝑆 βˆƒπ‘€ ∈ ( I β€˜π΅)((1st β€˜π‘₯) βŠ† 𝑀 ∧ 𝑀 βŠ† (2nd β€˜π‘₯)))
51 fvex 6901 . . . . 5 ( I β€˜π΅) ∈ V
52 sseq2 4007 . . . . . 6 (𝑀 = (π‘“β€˜π‘₯) β†’ ((1st β€˜π‘₯) βŠ† 𝑀 ↔ (1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯)))
53 sseq1 4006 . . . . . 6 (𝑀 = (π‘“β€˜π‘₯) β†’ (𝑀 βŠ† (2nd β€˜π‘₯) ↔ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))
5452, 53anbi12d 631 . . . . 5 (𝑀 = (π‘“β€˜π‘₯) β†’ (((1st β€˜π‘₯) βŠ† 𝑀 ∧ 𝑀 βŠ† (2nd β€˜π‘₯)) ↔ ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))))
5551, 54axcc4dom 10432 . . . 4 ((𝑆 β‰Ό Ο‰ ∧ βˆ€π‘₯ ∈ 𝑆 βˆƒπ‘€ ∈ ( I β€˜π΅)((1st β€˜π‘₯) βŠ† 𝑀 ∧ 𝑀 βŠ† (2nd β€˜π‘₯))) β†’ βˆƒπ‘“(𝑓:π‘†βŸΆ( I β€˜π΅) ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))))
5624, 50, 55syl2anc 584 . . 3 (((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) β†’ βˆƒπ‘“(𝑓:π‘†βŸΆ( I β€˜π΅) ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))))
5746ad2antrr 724 . . . . . . 7 (((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) β†’ ( I β€˜π΅) = 𝐡)
5857feq3d 6701 . . . . . 6 (((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) β†’ (𝑓:π‘†βŸΆ( I β€˜π΅) ↔ 𝑓:π‘†βŸΆπ΅))
5958anbi1d 630 . . . . 5 (((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) β†’ ((𝑓:π‘†βŸΆ( I β€˜π΅) ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ↔ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))))
60 2ndctop 22942 . . . . . . . . . . . 12 (𝐽 ∈ 2ndΟ‰ β†’ 𝐽 ∈ Top)
6160adantl 482 . . . . . . . . . . 11 ((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) β†’ 𝐽 ∈ Top)
6261ad2antrr 724 . . . . . . . . . 10 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ 𝐽 ∈ Top)
63 frn 6721 . . . . . . . . . . . 12 (𝑓:π‘†βŸΆπ΅ β†’ ran 𝑓 βŠ† 𝐡)
6463ad2antrl 726 . . . . . . . . . . 11 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ ran 𝑓 βŠ† 𝐡)
65 bastg 22460 . . . . . . . . . . . . 13 (𝐡 ∈ TopBases β†’ 𝐡 βŠ† (topGenβ€˜π΅))
6665ad3antrrr 728 . . . . . . . . . . . 12 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ 𝐡 βŠ† (topGenβ€˜π΅))
67 2ndcctbss.1 . . . . . . . . . . . 12 𝐽 = (topGenβ€˜π΅)
6866, 67sseqtrrdi 4032 . . . . . . . . . . 11 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ 𝐡 βŠ† 𝐽)
6964, 68sstrd 3991 . . . . . . . . . 10 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ ran 𝑓 βŠ† 𝐽)
70 simprrl 779 . . . . . . . . . . . . . . 15 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) β†’ π‘œ ∈ 𝐽)
71 simprr 771 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽)) β†’ (topGenβ€˜π‘) = 𝐽)
7271ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) β†’ (topGenβ€˜π‘) = 𝐽)
7370, 72eleqtrrd 2836 . . . . . . . . . . . . . 14 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) β†’ π‘œ ∈ (topGenβ€˜π‘))
74 simprrr 780 . . . . . . . . . . . . . 14 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) β†’ 𝑑 ∈ π‘œ)
75 tg2 22459 . . . . . . . . . . . . . 14 ((π‘œ ∈ (topGenβ€˜π‘) ∧ 𝑑 ∈ π‘œ) β†’ βˆƒπ‘‘ ∈ 𝑐 (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))
7673, 74, 75syl2anc 584 . . . . . . . . . . . . 13 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) β†’ βˆƒπ‘‘ ∈ 𝑐 (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))
77 bastg 22460 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ TopBases β†’ 𝑐 βŠ† (topGenβ€˜π‘))
7877ad2antrl 726 . . . . . . . . . . . . . . . . . 18 (((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) β†’ 𝑐 βŠ† (topGenβ€˜π‘))
7978ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) β†’ 𝑐 βŠ† (topGenβ€˜π‘))
8067eqeq2i 2745 . . . . . . . . . . . . . . . . . . . . 21 ((topGenβ€˜π‘) = 𝐽 ↔ (topGenβ€˜π‘) = (topGenβ€˜π΅))
8180biimpi 215 . . . . . . . . . . . . . . . . . . . 20 ((topGenβ€˜π‘) = 𝐽 β†’ (topGenβ€˜π‘) = (topGenβ€˜π΅))
8281adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽) β†’ (topGenβ€˜π‘) = (topGenβ€˜π΅))
8382ad2antll 727 . . . . . . . . . . . . . . . . . 18 (((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) β†’ (topGenβ€˜π‘) = (topGenβ€˜π΅))
8483ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) β†’ (topGenβ€˜π‘) = (topGenβ€˜π΅))
8579, 84sseqtrd 4021 . . . . . . . . . . . . . . . 16 (((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) β†’ 𝑐 βŠ† (topGenβ€˜π΅))
86 simprl 769 . . . . . . . . . . . . . . . 16 (((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) β†’ 𝑑 ∈ 𝑐)
8785, 86sseldd 3982 . . . . . . . . . . . . . . 15 (((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) β†’ 𝑑 ∈ (topGenβ€˜π΅))
88 simprrl 779 . . . . . . . . . . . . . . 15 (((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) β†’ 𝑑 ∈ 𝑑)
89 tg2 22459 . . . . . . . . . . . . . . 15 ((𝑑 ∈ (topGenβ€˜π΅) ∧ 𝑑 ∈ 𝑑) β†’ βˆƒπ‘š ∈ 𝐡 (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))
9087, 88, 89syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) β†’ βˆƒπ‘š ∈ 𝐡 (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))
9165ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) β†’ 𝐡 βŠ† (topGenβ€˜π΅))
9291ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) β†’ 𝐡 βŠ† (topGenβ€˜π΅))
9372ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) β†’ (topGenβ€˜π‘) = 𝐽)
9493, 67eqtr2di 2789 . . . . . . . . . . . . . . . . . 18 ((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) β†’ (topGenβ€˜π΅) = (topGenβ€˜π‘))
9592, 94sseqtrd 4021 . . . . . . . . . . . . . . . . 17 ((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) β†’ 𝐡 βŠ† (topGenβ€˜π‘))
96 simprl 769 . . . . . . . . . . . . . . . . 17 ((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) β†’ π‘š ∈ 𝐡)
9795, 96sseldd 3982 . . . . . . . . . . . . . . . 16 ((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) β†’ π‘š ∈ (topGenβ€˜π‘))
98 simprrl 779 . . . . . . . . . . . . . . . 16 ((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) β†’ 𝑑 ∈ π‘š)
99 tg2 22459 . . . . . . . . . . . . . . . 16 ((π‘š ∈ (topGenβ€˜π‘) ∧ 𝑑 ∈ π‘š) β†’ βˆƒπ‘› ∈ 𝑐 (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))
10097, 98, 99syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) β†’ βˆƒπ‘› ∈ 𝑐 (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))
101 ffn 6714 . . . . . . . . . . . . . . . . . . . 20 (𝑓:π‘†βŸΆπ΅ β†’ 𝑓 Fn 𝑆)
102101ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ)) β†’ 𝑓 Fn 𝑆)
103102ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) β†’ 𝑓 Fn 𝑆)
104103ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ 𝑓 Fn 𝑆)
105 simprl 769 . . . . . . . . . . . . . . . . . 18 (((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ 𝑛 ∈ 𝑐)
10686ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ 𝑑 ∈ 𝑐)
107 simplrl 775 . . . . . . . . . . . . . . . . . . 19 (((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ π‘š ∈ 𝐡)
108 simprrr 780 . . . . . . . . . . . . . . . . . . 19 (((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ 𝑛 βŠ† π‘š)
109 simprr 771 . . . . . . . . . . . . . . . . . . . 20 ((π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑)) β†’ π‘š βŠ† 𝑑)
110109ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ π‘š βŠ† 𝑑)
111 sseq2 4007 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 = π‘š β†’ (𝑛 βŠ† 𝑀 ↔ 𝑛 βŠ† π‘š))
112 sseq1 4006 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 = π‘š β†’ (𝑀 βŠ† 𝑑 ↔ π‘š βŠ† 𝑑))
113111, 112anbi12d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑀 = π‘š β†’ ((𝑛 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑑) ↔ (𝑛 βŠ† π‘š ∧ π‘š βŠ† 𝑑)))
114113rspcev 3612 . . . . . . . . . . . . . . . . . . 19 ((π‘š ∈ 𝐡 ∧ (𝑛 βŠ† π‘š ∧ π‘š βŠ† 𝑑)) β†’ βˆƒπ‘€ ∈ 𝐡 (𝑛 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑑))
115107, 108, 110, 114syl12anc 835 . . . . . . . . . . . . . . . . . 18 (((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ βˆƒπ‘€ ∈ 𝐡 (𝑛 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑑))
116 df-br 5148 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑆𝑑 ↔ βŸ¨π‘›, π‘‘βŸ© ∈ 𝑆)
117 vex 3478 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ V
118 vex 3478 . . . . . . . . . . . . . . . . . . . 20 𝑑 ∈ V
119 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑒 = 𝑛 ∧ 𝑣 = 𝑑) β†’ 𝑒 = 𝑛)
120119eleq1d 2818 . . . . . . . . . . . . . . . . . . . . 21 ((𝑒 = 𝑛 ∧ 𝑣 = 𝑑) β†’ (𝑒 ∈ 𝑐 ↔ 𝑛 ∈ 𝑐))
121 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑒 = 𝑛 ∧ 𝑣 = 𝑑) β†’ 𝑣 = 𝑑)
122121eleq1d 2818 . . . . . . . . . . . . . . . . . . . . 21 ((𝑒 = 𝑛 ∧ 𝑣 = 𝑑) β†’ (𝑣 ∈ 𝑐 ↔ 𝑑 ∈ 𝑐))
123 sseq1 4006 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 = 𝑛 β†’ (𝑒 βŠ† 𝑀 ↔ 𝑛 βŠ† 𝑀))
124 sseq2 4007 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝑑 β†’ (𝑀 βŠ† 𝑣 ↔ 𝑀 βŠ† 𝑑))
125123, 124bi2anan9 637 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑒 = 𝑛 ∧ 𝑣 = 𝑑) β†’ ((𝑒 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑣) ↔ (𝑛 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑑)))
126125rexbidv 3178 . . . . . . . . . . . . . . . . . . . . 21 ((𝑒 = 𝑛 ∧ 𝑣 = 𝑑) β†’ (βˆƒπ‘€ ∈ 𝐡 (𝑒 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑣) ↔ βˆƒπ‘€ ∈ 𝐡 (𝑛 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑑)))
127120, 122, 1263anbi123d 1436 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = 𝑛 ∧ 𝑣 = 𝑑) β†’ ((𝑒 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ βˆƒπ‘€ ∈ 𝐡 (𝑒 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑣)) ↔ (𝑛 ∈ 𝑐 ∧ 𝑑 ∈ 𝑐 ∧ βˆƒπ‘€ ∈ 𝐡 (𝑛 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑑))))
128117, 118, 127, 8braba 5536 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑆𝑑 ↔ (𝑛 ∈ 𝑐 ∧ 𝑑 ∈ 𝑐 ∧ βˆƒπ‘€ ∈ 𝐡 (𝑛 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑑)))
129116, 128bitr3i 276 . . . . . . . . . . . . . . . . . 18 (βŸ¨π‘›, π‘‘βŸ© ∈ 𝑆 ↔ (𝑛 ∈ 𝑐 ∧ 𝑑 ∈ 𝑐 ∧ βˆƒπ‘€ ∈ 𝐡 (𝑛 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑑)))
130105, 106, 115, 129syl3anbrc 1343 . . . . . . . . . . . . . . . . 17 (((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ βŸ¨π‘›, π‘‘βŸ© ∈ 𝑆)
131 fnfvelrn 7079 . . . . . . . . . . . . . . . . 17 ((𝑓 Fn 𝑆 ∧ βŸ¨π‘›, π‘‘βŸ© ∈ 𝑆) β†’ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∈ ran 𝑓)
132104, 130, 131syl2anc 584 . . . . . . . . . . . . . . . 16 (((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∈ ran 𝑓)
133 simprl 769 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ 𝑛 ∈ 𝑐)
134 simplll 773 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ 𝑑 ∈ 𝑐)
135 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ π‘š ∈ 𝐡)
136 simprrr 780 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ 𝑛 βŠ† π‘š)
137109ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ π‘š βŠ† 𝑑)
138135, 136, 137, 114syl12anc 835 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ βˆƒπ‘€ ∈ 𝐡 (𝑛 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑑))
139133, 134, 138, 129syl3anbrc 1343 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ βŸ¨π‘›, π‘‘βŸ© ∈ 𝑆)
140 fveq2 6888 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π‘₯ = βŸ¨π‘›, π‘‘βŸ© β†’ (1st β€˜π‘₯) = (1st β€˜βŸ¨π‘›, π‘‘βŸ©))
141 fveq2 6888 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π‘₯ = βŸ¨π‘›, π‘‘βŸ© β†’ (π‘“β€˜π‘₯) = (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©))
142140, 141sseq12d 4014 . . . . . . . . . . . . . . . . . . . . . . . 24 (π‘₯ = βŸ¨π‘›, π‘‘βŸ© β†’ ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ↔ (1st β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©)))
143 fveq2 6888 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π‘₯ = βŸ¨π‘›, π‘‘βŸ© β†’ (2nd β€˜π‘₯) = (2nd β€˜βŸ¨π‘›, π‘‘βŸ©))
144141, 143sseq12d 4014 . . . . . . . . . . . . . . . . . . . . . . . 24 (π‘₯ = βŸ¨π‘›, π‘‘βŸ© β†’ ((π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯) ↔ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† (2nd β€˜βŸ¨π‘›, π‘‘βŸ©)))
145142, 144anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . 23 (π‘₯ = βŸ¨π‘›, π‘‘βŸ© β†’ (((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)) ↔ ((1st β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† (2nd β€˜βŸ¨π‘›, π‘‘βŸ©))))
146145rspcv 3608 . . . . . . . . . . . . . . . . . . . . . 22 (βŸ¨π‘›, π‘‘βŸ© ∈ 𝑆 β†’ (βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)) β†’ ((1st β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† (2nd β€˜βŸ¨π‘›, π‘‘βŸ©))))
147139, 146syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ (βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)) β†’ ((1st β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† (2nd β€˜βŸ¨π‘›, π‘‘βŸ©))))
148117, 118op1st 7979 . . . . . . . . . . . . . . . . . . . . . . . 24 (1st β€˜βŸ¨π‘›, π‘‘βŸ©) = 𝑛
149148sseq1i 4009 . . . . . . . . . . . . . . . . . . . . . . 23 ((1st β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ↔ 𝑛 βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©))
150117, 118op2nd 7980 . . . . . . . . . . . . . . . . . . . . . . . 24 (2nd β€˜βŸ¨π‘›, π‘‘βŸ©) = 𝑑
151150sseq2i 4010 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† (2nd β€˜βŸ¨π‘›, π‘‘βŸ©) ↔ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† 𝑑)
152149, 151anbi12i 627 . . . . . . . . . . . . . . . . . . . . . 22 (((1st β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† (2nd β€˜βŸ¨π‘›, π‘‘βŸ©)) ↔ (𝑛 βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† 𝑑))
153 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) ∧ (𝑛 βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† 𝑑)) β†’ 𝑛 βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©))
154 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š)) β†’ 𝑑 ∈ 𝑛)
155154ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) ∧ (𝑛 βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† 𝑑)) β†’ 𝑑 ∈ 𝑛)
156153, 155sseldd 3982 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) ∧ (𝑛 βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† 𝑑)) β†’ 𝑑 ∈ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©))
157 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) ∧ (𝑛 βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† 𝑑)) β†’ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† 𝑑)
158 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) β†’ 𝑑 βŠ† π‘œ)
159158ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) ∧ (𝑛 βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† 𝑑)) β†’ 𝑑 βŠ† π‘œ)
160157, 159sstrd 3991 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) ∧ (𝑛 βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† 𝑑)) β†’ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† π‘œ)
161156, 160jca 512 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) ∧ (𝑛 βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† 𝑑)) β†’ (𝑑 ∈ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† π‘œ))
162161ex 413 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ ((𝑛 βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† 𝑑) β†’ (𝑑 ∈ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† π‘œ)))
163152, 162biimtrid 241 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ (((1st β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† (2nd β€˜βŸ¨π‘›, π‘‘βŸ©)) β†’ (𝑑 ∈ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† π‘œ)))
164147, 163syldc 48 . . . . . . . . . . . . . . . . . . . 20 (βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)) β†’ ((((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ (𝑑 ∈ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† π‘œ)))
165164exp4c 433 . . . . . . . . . . . . . . . . . . 19 (βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)) β†’ ((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) β†’ ((π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑)) β†’ ((𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š)) β†’ (𝑑 ∈ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† π‘œ)))))
166165ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ)) β†’ ((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) β†’ ((π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑)) β†’ ((𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š)) β†’ (𝑑 ∈ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† π‘œ)))))
167166adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) β†’ ((𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ)) β†’ ((π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑)) β†’ ((𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š)) β†’ (𝑑 ∈ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† π‘œ)))))
168167imp41 426 . . . . . . . . . . . . . . . 16 (((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ (𝑑 ∈ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† π‘œ))
169 eleq2 2822 . . . . . . . . . . . . . . . . . 18 (𝑏 = (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) β†’ (𝑑 ∈ 𝑏 ↔ 𝑑 ∈ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©)))
170 sseq1 4006 . . . . . . . . . . . . . . . . . 18 (𝑏 = (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) β†’ (𝑏 βŠ† π‘œ ↔ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† π‘œ))
171169, 170anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑏 = (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) β†’ ((𝑑 ∈ 𝑏 ∧ 𝑏 βŠ† π‘œ) ↔ (𝑑 ∈ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† π‘œ)))
172171rspcev 3612 . . . . . . . . . . . . . . . 16 (((π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∈ ran 𝑓 ∧ (𝑑 ∈ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) ∧ (π‘“β€˜βŸ¨π‘›, π‘‘βŸ©) βŠ† π‘œ)) β†’ βˆƒπ‘ ∈ ran 𝑓(𝑑 ∈ 𝑏 ∧ 𝑏 βŠ† π‘œ))
173132, 168, 172syl2anc 584 . . . . . . . . . . . . . . 15 (((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑑 ∈ 𝑛 ∧ 𝑛 βŠ† π‘š))) β†’ βˆƒπ‘ ∈ ran 𝑓(𝑑 ∈ 𝑏 ∧ 𝑏 βŠ† π‘œ))
174100, 173rexlimddv 3161 . . . . . . . . . . . . . 14 ((((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) ∧ (π‘š ∈ 𝐡 ∧ (𝑑 ∈ π‘š ∧ π‘š βŠ† 𝑑))) β†’ βˆƒπ‘ ∈ ran 𝑓(𝑑 ∈ 𝑏 ∧ 𝑏 βŠ† π‘œ))
17590, 174rexlimddv 3161 . . . . . . . . . . . . 13 (((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑑 ∈ 𝑑 ∧ 𝑑 βŠ† π‘œ))) β†’ βˆƒπ‘ ∈ ran 𝑓(𝑑 ∈ 𝑏 ∧ 𝑏 βŠ† π‘œ))
17676, 175rexlimddv 3161 . . . . . . . . . . . 12 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) ∧ (π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ))) β†’ βˆƒπ‘ ∈ ran 𝑓(𝑑 ∈ 𝑏 ∧ 𝑏 βŠ† π‘œ))
177176expr 457 . . . . . . . . . . 11 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ ((π‘œ ∈ 𝐽 ∧ 𝑑 ∈ π‘œ) β†’ βˆƒπ‘ ∈ ran 𝑓(𝑑 ∈ 𝑏 ∧ 𝑏 βŠ† π‘œ)))
178177ralrimivv 3198 . . . . . . . . . 10 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ βˆ€π‘œ ∈ 𝐽 βˆ€π‘‘ ∈ π‘œ βˆƒπ‘ ∈ ran 𝑓(𝑑 ∈ 𝑏 ∧ 𝑏 βŠ† π‘œ))
179 basgen2 22483 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ran 𝑓 βŠ† 𝐽 ∧ βˆ€π‘œ ∈ 𝐽 βˆ€π‘‘ ∈ π‘œ βˆƒπ‘ ∈ ran 𝑓(𝑑 ∈ 𝑏 ∧ 𝑏 βŠ† π‘œ)) β†’ (topGenβ€˜ran 𝑓) = 𝐽)
18062, 69, 178, 179syl3anc 1371 . . . . . . . . 9 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ (topGenβ€˜ran 𝑓) = 𝐽)
181180, 62eqeltrd 2833 . . . . . . . 8 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ (topGenβ€˜ran 𝑓) ∈ Top)
182 tgclb 22464 . . . . . . . 8 (ran 𝑓 ∈ TopBases ↔ (topGenβ€˜ran 𝑓) ∈ Top)
183181, 182sylibr 233 . . . . . . 7 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ ran 𝑓 ∈ TopBases)
184 omelon 9637 . . . . . . . . . 10 Ο‰ ∈ On
18524adantr 481 . . . . . . . . . 10 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ 𝑆 β‰Ό Ο‰)
186 ondomen 10028 . . . . . . . . . 10 ((Ο‰ ∈ On ∧ 𝑆 β‰Ό Ο‰) β†’ 𝑆 ∈ dom card)
187184, 185, 186sylancr 587 . . . . . . . . 9 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ 𝑆 ∈ dom card)
188101ad2antrl 726 . . . . . . . . . 10 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ 𝑓 Fn 𝑆)
189 dffn4 6808 . . . . . . . . . 10 (𝑓 Fn 𝑆 ↔ 𝑓:𝑆–ontoβ†’ran 𝑓)
190188, 189sylib 217 . . . . . . . . 9 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ 𝑓:𝑆–ontoβ†’ran 𝑓)
191 fodomnum 10048 . . . . . . . . 9 (𝑆 ∈ dom card β†’ (𝑓:𝑆–ontoβ†’ran 𝑓 β†’ ran 𝑓 β‰Ό 𝑆))
192187, 190, 191sylc 65 . . . . . . . 8 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ ran 𝑓 β‰Ό 𝑆)
193 domtr 8999 . . . . . . . 8 ((ran 𝑓 β‰Ό 𝑆 ∧ 𝑆 β‰Ό Ο‰) β†’ ran 𝑓 β‰Ό Ο‰)
194192, 185, 193syl2anc 584 . . . . . . 7 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ ran 𝑓 β‰Ό Ο‰)
195180eqcomd 2738 . . . . . . 7 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ 𝐽 = (topGenβ€˜ran 𝑓))
196 breq1 5150 . . . . . . . . 9 (𝑏 = ran 𝑓 β†’ (𝑏 β‰Ό Ο‰ ↔ ran 𝑓 β‰Ό Ο‰))
197 sseq1 4006 . . . . . . . . 9 (𝑏 = ran 𝑓 β†’ (𝑏 βŠ† 𝐡 ↔ ran 𝑓 βŠ† 𝐡))
198 fveq2 6888 . . . . . . . . . 10 (𝑏 = ran 𝑓 β†’ (topGenβ€˜π‘) = (topGenβ€˜ran 𝑓))
199198eqeq2d 2743 . . . . . . . . 9 (𝑏 = ran 𝑓 β†’ (𝐽 = (topGenβ€˜π‘) ↔ 𝐽 = (topGenβ€˜ran 𝑓)))
200196, 197, 1993anbi123d 1436 . . . . . . . 8 (𝑏 = ran 𝑓 β†’ ((𝑏 β‰Ό Ο‰ ∧ 𝑏 βŠ† 𝐡 ∧ 𝐽 = (topGenβ€˜π‘)) ↔ (ran 𝑓 β‰Ό Ο‰ ∧ ran 𝑓 βŠ† 𝐡 ∧ 𝐽 = (topGenβ€˜ran 𝑓))))
201200rspcev 3612 . . . . . . 7 ((ran 𝑓 ∈ TopBases ∧ (ran 𝑓 β‰Ό Ο‰ ∧ ran 𝑓 βŠ† 𝐡 ∧ 𝐽 = (topGenβ€˜ran 𝑓))) β†’ βˆƒπ‘ ∈ TopBases (𝑏 β‰Ό Ο‰ ∧ 𝑏 βŠ† 𝐡 ∧ 𝐽 = (topGenβ€˜π‘)))
202183, 194, 64, 195, 201syl13anc 1372 . . . . . 6 ((((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) ∧ (𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯)))) β†’ βˆƒπ‘ ∈ TopBases (𝑏 β‰Ό Ο‰ ∧ 𝑏 βŠ† 𝐡 ∧ 𝐽 = (topGenβ€˜π‘)))
203202ex 413 . . . . 5 (((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) β†’ ((𝑓:π‘†βŸΆπ΅ ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) β†’ βˆƒπ‘ ∈ TopBases (𝑏 β‰Ό Ο‰ ∧ 𝑏 βŠ† 𝐡 ∧ 𝐽 = (topGenβ€˜π‘))))
20459, 203sylbid 239 . . . 4 (((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) β†’ ((𝑓:π‘†βŸΆ( I β€˜π΅) ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) β†’ βˆƒπ‘ ∈ TopBases (𝑏 β‰Ό Ο‰ ∧ 𝑏 βŠ† 𝐡 ∧ 𝐽 = (topGenβ€˜π‘))))
205204exlimdv 1936 . . 3 (((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) β†’ (βˆƒπ‘“(𝑓:π‘†βŸΆ( I β€˜π΅) ∧ βˆ€π‘₯ ∈ 𝑆 ((1st β€˜π‘₯) βŠ† (π‘“β€˜π‘₯) ∧ (π‘“β€˜π‘₯) βŠ† (2nd β€˜π‘₯))) β†’ βˆƒπ‘ ∈ TopBases (𝑏 β‰Ό Ο‰ ∧ 𝑏 βŠ† 𝐡 ∧ 𝐽 = (topGenβ€˜π‘))))
20656, 205mpd 15 . 2 (((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) ∧ (𝑐 ∈ TopBases ∧ (𝑐 β‰Ό Ο‰ ∧ (topGenβ€˜π‘) = 𝐽))) β†’ βˆƒπ‘ ∈ TopBases (𝑏 β‰Ό Ο‰ ∧ 𝑏 βŠ† 𝐡 ∧ 𝐽 = (topGenβ€˜π‘)))
2073, 206rexlimddv 3161 1 ((𝐡 ∈ TopBases ∧ 𝐽 ∈ 2ndΟ‰) β†’ βˆƒπ‘ ∈ TopBases (𝑏 β‰Ό Ο‰ ∧ 𝑏 βŠ† 𝐡 ∧ 𝐽 = (topGenβ€˜π‘)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βŠ† wss 3947  βŸ¨cop 4633   class class class wbr 5147  {copab 5209   I cid 5572   Γ— cxp 5673  dom cdm 5675  ran crn 5676  Rel wrel 5680  Oncon0 6361   Fn wfn 6535  βŸΆwf 6536  β€“ontoβ†’wfo 6538  β€˜cfv 6540  Ο‰com 7851  1st c1st 7969  2nd c2nd 7970   β‰ˆ cen 8932   β‰Ό cdom 8933  cardccrd 9926  topGenctg 17379  Topctop 22386  TopBasesctb 22439  2ndΟ‰c2ndc 22933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cc 10426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-card 9930  df-acn 9933  df-topgen 17385  df-top 22387  df-bases 22440  df-2ndc 22935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator