MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcctbss Structured version   Visualization version   GIF version

Theorem 2ndcctbss 23349
Description: If a topology is second-countable, every base has a countable subset which is a base. Exercise 16B2 in Willard. (Contributed by Jeff Hankins, 28-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
2ndcctbss.1 𝐽 = (topGen‘𝐵)
2ndcctbss.2 𝑆 = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣))}
Assertion
Ref Expression
2ndcctbss ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
Distinct variable groups:   𝑏,𝑐,𝑢,𝑣,𝑤,𝐵   𝐽,𝑏,𝑐
Allowed substitution hints:   𝑆(𝑤,𝑣,𝑢,𝑏,𝑐)   𝐽(𝑤,𝑣,𝑢)

Proof of Theorem 2ndcctbss
Dummy variables 𝑑 𝑓 𝑚 𝑛 𝑜 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → 𝐽 ∈ 2ndω)
2 is2ndc 23340 . . 3 (𝐽 ∈ 2ndω ↔ ∃𝑐 ∈ TopBases (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))
31, 2sylib 218 . 2 ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → ∃𝑐 ∈ TopBases (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))
4 vex 3454 . . . . . . 7 𝑐 ∈ V
54, 4xpex 7732 . . . . . 6 (𝑐 × 𝑐) ∈ V
6 3simpa 1148 . . . . . . . 8 ((𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣)) → (𝑢𝑐𝑣𝑐))
76ssopab2i 5513 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣))} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐)}
8 2ndcctbss.2 . . . . . . 7 𝑆 = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣))}
9 df-xp 5647 . . . . . . 7 (𝑐 × 𝑐) = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐)}
107, 8, 93sstr4i 4001 . . . . . 6 𝑆 ⊆ (𝑐 × 𝑐)
11 ssdomg 8974 . . . . . 6 ((𝑐 × 𝑐) ∈ V → (𝑆 ⊆ (𝑐 × 𝑐) → 𝑆 ≼ (𝑐 × 𝑐)))
125, 10, 11mp2 9 . . . . 5 𝑆 ≼ (𝑐 × 𝑐)
134xpdom1 9045 . . . . . . . . 9 (𝑐 ≼ ω → (𝑐 × 𝑐) ≼ (ω × 𝑐))
14 omex 9603 . . . . . . . . . 10 ω ∈ V
1514xpdom2 9041 . . . . . . . . 9 (𝑐 ≼ ω → (ω × 𝑐) ≼ (ω × ω))
16 domtr 8981 . . . . . . . . 9 (((𝑐 × 𝑐) ≼ (ω × 𝑐) ∧ (ω × 𝑐) ≼ (ω × ω)) → (𝑐 × 𝑐) ≼ (ω × ω))
1713, 15, 16syl2anc 584 . . . . . . . 8 (𝑐 ≼ ω → (𝑐 × 𝑐) ≼ (ω × ω))
18 xpomen 9975 . . . . . . . 8 (ω × ω) ≈ ω
19 domentr 8987 . . . . . . . 8 (((𝑐 × 𝑐) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝑐 × 𝑐) ≼ ω)
2017, 18, 19sylancl 586 . . . . . . 7 (𝑐 ≼ ω → (𝑐 × 𝑐) ≼ ω)
2120adantr 480 . . . . . 6 ((𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽) → (𝑐 × 𝑐) ≼ ω)
2221ad2antll 729 . . . . 5 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → (𝑐 × 𝑐) ≼ ω)
23 domtr 8981 . . . . 5 ((𝑆 ≼ (𝑐 × 𝑐) ∧ (𝑐 × 𝑐) ≼ ω) → 𝑆 ≼ ω)
2412, 22, 23sylancr 587 . . . 4 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → 𝑆 ≼ ω)
258relopabiv 5786 . . . . . . . . 9 Rel 𝑆
26 simpr 484 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → 𝑥𝑆)
27 1st2nd 8021 . . . . . . . . 9 ((Rel 𝑆𝑥𝑆) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2825, 26, 27sylancr 587 . . . . . . . 8 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2928, 26eqeltrrd 2830 . . . . . . 7 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑆)
30 df-br 5111 . . . . . . . . 9 ((1st𝑥)𝑆(2nd𝑥) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑆)
31 fvex 6874 . . . . . . . . . 10 (1st𝑥) ∈ V
32 fvex 6874 . . . . . . . . . 10 (2nd𝑥) ∈ V
33 simpl 482 . . . . . . . . . . . 12 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → 𝑢 = (1st𝑥))
3433eleq1d 2814 . . . . . . . . . . 11 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → (𝑢𝑐 ↔ (1st𝑥) ∈ 𝑐))
35 simpr 484 . . . . . . . . . . . 12 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → 𝑣 = (2nd𝑥))
3635eleq1d 2814 . . . . . . . . . . 11 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → (𝑣𝑐 ↔ (2nd𝑥) ∈ 𝑐))
37 sseq1 3975 . . . . . . . . . . . . 13 (𝑢 = (1st𝑥) → (𝑢𝑤 ↔ (1st𝑥) ⊆ 𝑤))
38 sseq2 3976 . . . . . . . . . . . . 13 (𝑣 = (2nd𝑥) → (𝑤𝑣𝑤 ⊆ (2nd𝑥)))
3937, 38bi2anan9 638 . . . . . . . . . . . 12 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → ((𝑢𝑤𝑤𝑣) ↔ ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))))
4039rexbidv 3158 . . . . . . . . . . 11 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → (∃𝑤𝐵 (𝑢𝑤𝑤𝑣) ↔ ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))))
4134, 36, 403anbi123d 1438 . . . . . . . . . 10 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → ((𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣)) ↔ ((1st𝑥) ∈ 𝑐 ∧ (2nd𝑥) ∈ 𝑐 ∧ ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))))
4231, 32, 41, 8braba 5500 . . . . . . . . 9 ((1st𝑥)𝑆(2nd𝑥) ↔ ((1st𝑥) ∈ 𝑐 ∧ (2nd𝑥) ∈ 𝑐 ∧ ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))))
4330, 42bitr3i 277 . . . . . . . 8 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑆 ↔ ((1st𝑥) ∈ 𝑐 ∧ (2nd𝑥) ∈ 𝑐 ∧ ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))))
4443simp3bi 1147 . . . . . . 7 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑆 → ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))
4529, 44syl 17 . . . . . 6 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))
46 fvi 6940 . . . . . . 7 (𝐵 ∈ TopBases → ( I ‘𝐵) = 𝐵)
4746ad3antrrr 730 . . . . . 6 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → ( I ‘𝐵) = 𝐵)
4845, 47rexeqtrrdv 3306 . . . . 5 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → ∃𝑤 ∈ ( I ‘𝐵)((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))
4948ralrimiva 3126 . . . 4 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ∀𝑥𝑆𝑤 ∈ ( I ‘𝐵)((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))
50 fvex 6874 . . . . 5 ( I ‘𝐵) ∈ V
51 sseq2 3976 . . . . . 6 (𝑤 = (𝑓𝑥) → ((1st𝑥) ⊆ 𝑤 ↔ (1st𝑥) ⊆ (𝑓𝑥)))
52 sseq1 3975 . . . . . 6 (𝑤 = (𝑓𝑥) → (𝑤 ⊆ (2nd𝑥) ↔ (𝑓𝑥) ⊆ (2nd𝑥)))
5351, 52anbi12d 632 . . . . 5 (𝑤 = (𝑓𝑥) → (((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)) ↔ ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))))
5450, 53axcc4dom 10401 . . . 4 ((𝑆 ≼ ω ∧ ∀𝑥𝑆𝑤 ∈ ( I ‘𝐵)((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))) → ∃𝑓(𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))))
5524, 49, 54syl2anc 584 . . 3 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ∃𝑓(𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))))
5646ad2antrr 726 . . . . . . 7 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ( I ‘𝐵) = 𝐵)
5756feq3d 6676 . . . . . 6 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → (𝑓:𝑆⟶( I ‘𝐵) ↔ 𝑓:𝑆𝐵))
5857anbi1d 631 . . . . 5 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ((𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ↔ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))))
59 2ndctop 23341 . . . . . . . . . . . 12 (𝐽 ∈ 2ndω → 𝐽 ∈ Top)
6059adantl 481 . . . . . . . . . . 11 ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → 𝐽 ∈ Top)
6160ad2antrr 726 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝐽 ∈ Top)
62 frn 6698 . . . . . . . . . . . 12 (𝑓:𝑆𝐵 → ran 𝑓𝐵)
6362ad2antrl 728 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓𝐵)
64 bastg 22860 . . . . . . . . . . . . 13 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
6564ad3antrrr 730 . . . . . . . . . . . 12 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝐵 ⊆ (topGen‘𝐵))
66 2ndcctbss.1 . . . . . . . . . . . 12 𝐽 = (topGen‘𝐵)
6765, 66sseqtrrdi 3991 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝐵𝐽)
6863, 67sstrd 3960 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓𝐽)
69 simprrl 780 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → 𝑜𝐽)
70 simprr 772 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽)) → (topGen‘𝑐) = 𝐽)
7170ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → (topGen‘𝑐) = 𝐽)
7269, 71eleqtrrd 2832 . . . . . . . . . . . . . 14 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → 𝑜 ∈ (topGen‘𝑐))
73 simprrr 781 . . . . . . . . . . . . . 14 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → 𝑡𝑜)
74 tg2 22859 . . . . . . . . . . . . . 14 ((𝑜 ∈ (topGen‘𝑐) ∧ 𝑡𝑜) → ∃𝑑𝑐 (𝑡𝑑𝑑𝑜))
7572, 73, 74syl2anc 584 . . . . . . . . . . . . 13 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → ∃𝑑𝑐 (𝑡𝑑𝑑𝑜))
76 bastg 22860 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ TopBases → 𝑐 ⊆ (topGen‘𝑐))
7776ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → 𝑐 ⊆ (topGen‘𝑐))
7877ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑐 ⊆ (topGen‘𝑐))
7966eqeq2i 2743 . . . . . . . . . . . . . . . . . . . . 21 ((topGen‘𝑐) = 𝐽 ↔ (topGen‘𝑐) = (topGen‘𝐵))
8079biimpi 216 . . . . . . . . . . . . . . . . . . . 20 ((topGen‘𝑐) = 𝐽 → (topGen‘𝑐) = (topGen‘𝐵))
8180adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽) → (topGen‘𝑐) = (topGen‘𝐵))
8281ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → (topGen‘𝑐) = (topGen‘𝐵))
8382ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → (topGen‘𝑐) = (topGen‘𝐵))
8478, 83sseqtrd 3986 . . . . . . . . . . . . . . . 16 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑐 ⊆ (topGen‘𝐵))
85 simprl 770 . . . . . . . . . . . . . . . 16 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑑𝑐)
8684, 85sseldd 3950 . . . . . . . . . . . . . . 15 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑑 ∈ (topGen‘𝐵))
87 simprrl 780 . . . . . . . . . . . . . . 15 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑡𝑑)
88 tg2 22859 . . . . . . . . . . . . . . 15 ((𝑑 ∈ (topGen‘𝐵) ∧ 𝑡𝑑) → ∃𝑚𝐵 (𝑡𝑚𝑚𝑑))
8986, 87, 88syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → ∃𝑚𝐵 (𝑡𝑚𝑚𝑑))
9064ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → 𝐵 ⊆ (topGen‘𝐵))
9190ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝐵 ⊆ (topGen‘𝐵))
9271ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → (topGen‘𝑐) = 𝐽)
9392, 66eqtr2di 2782 . . . . . . . . . . . . . . . . . 18 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → (topGen‘𝐵) = (topGen‘𝑐))
9491, 93sseqtrd 3986 . . . . . . . . . . . . . . . . 17 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝐵 ⊆ (topGen‘𝑐))
95 simprl 770 . . . . . . . . . . . . . . . . 17 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝑚𝐵)
9694, 95sseldd 3950 . . . . . . . . . . . . . . . 16 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝑚 ∈ (topGen‘𝑐))
97 simprrl 780 . . . . . . . . . . . . . . . 16 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝑡𝑚)
98 tg2 22859 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (topGen‘𝑐) ∧ 𝑡𝑚) → ∃𝑛𝑐 (𝑡𝑛𝑛𝑚))
9996, 97, 98syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → ∃𝑛𝑐 (𝑡𝑛𝑛𝑚))
100 ffn 6691 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝑆𝐵𝑓 Fn 𝑆)
101100ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜)) → 𝑓 Fn 𝑆)
102101ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑓 Fn 𝑆)
103102ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑓 Fn 𝑆)
104 simprl 770 . . . . . . . . . . . . . . . . . 18 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑛𝑐)
10585ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑑𝑐)
106 simplrl 776 . . . . . . . . . . . . . . . . . . 19 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑚𝐵)
107 simprrr 781 . . . . . . . . . . . . . . . . . . 19 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑛𝑚)
108 simprr 772 . . . . . . . . . . . . . . . . . . . 20 ((𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑)) → 𝑚𝑑)
109108ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑚𝑑)
110 sseq2 3976 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑚 → (𝑛𝑤𝑛𝑚))
111 sseq1 3975 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑚 → (𝑤𝑑𝑚𝑑))
112110, 111anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑚 → ((𝑛𝑤𝑤𝑑) ↔ (𝑛𝑚𝑚𝑑)))
113112rspcev 3591 . . . . . . . . . . . . . . . . . . 19 ((𝑚𝐵 ∧ (𝑛𝑚𝑚𝑑)) → ∃𝑤𝐵 (𝑛𝑤𝑤𝑑))
114106, 107, 109, 113syl12anc 836 . . . . . . . . . . . . . . . . . 18 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ∃𝑤𝐵 (𝑛𝑤𝑤𝑑))
115 df-br 5111 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑆𝑑 ↔ ⟨𝑛, 𝑑⟩ ∈ 𝑆)
116 vex 3454 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ V
117 vex 3454 . . . . . . . . . . . . . . . . . . . 20 𝑑 ∈ V
118 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢 = 𝑛𝑣 = 𝑑) → 𝑢 = 𝑛)
119118eleq1d 2814 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 = 𝑛𝑣 = 𝑑) → (𝑢𝑐𝑛𝑐))
120 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢 = 𝑛𝑣 = 𝑑) → 𝑣 = 𝑑)
121120eleq1d 2814 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 = 𝑛𝑣 = 𝑑) → (𝑣𝑐𝑑𝑐))
122 sseq1 3975 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑛 → (𝑢𝑤𝑛𝑤))
123 sseq2 3976 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝑑 → (𝑤𝑣𝑤𝑑))
124122, 123bi2anan9 638 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢 = 𝑛𝑣 = 𝑑) → ((𝑢𝑤𝑤𝑣) ↔ (𝑛𝑤𝑤𝑑)))
125124rexbidv 3158 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 = 𝑛𝑣 = 𝑑) → (∃𝑤𝐵 (𝑢𝑤𝑤𝑣) ↔ ∃𝑤𝐵 (𝑛𝑤𝑤𝑑)))
126119, 121, 1253anbi123d 1438 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 = 𝑛𝑣 = 𝑑) → ((𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣)) ↔ (𝑛𝑐𝑑𝑐 ∧ ∃𝑤𝐵 (𝑛𝑤𝑤𝑑))))
127116, 117, 126, 8braba 5500 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑆𝑑 ↔ (𝑛𝑐𝑑𝑐 ∧ ∃𝑤𝐵 (𝑛𝑤𝑤𝑑)))
128115, 127bitr3i 277 . . . . . . . . . . . . . . . . . 18 (⟨𝑛, 𝑑⟩ ∈ 𝑆 ↔ (𝑛𝑐𝑑𝑐 ∧ ∃𝑤𝐵 (𝑛𝑤𝑤𝑑)))
129104, 105, 114, 128syl3anbrc 1344 . . . . . . . . . . . . . . . . 17 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ⟨𝑛, 𝑑⟩ ∈ 𝑆)
130 fnfvelrn 7055 . . . . . . . . . . . . . . . . 17 ((𝑓 Fn 𝑆 ∧ ⟨𝑛, 𝑑⟩ ∈ 𝑆) → (𝑓‘⟨𝑛, 𝑑⟩) ∈ ran 𝑓)
131103, 129, 130syl2anc 584 . . . . . . . . . . . . . . . 16 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (𝑓‘⟨𝑛, 𝑑⟩) ∈ ran 𝑓)
132 simprl 770 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑛𝑐)
133 simplll 774 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑑𝑐)
134 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑚𝐵)
135 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑛𝑚)
136108ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑚𝑑)
137134, 135, 136, 113syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ∃𝑤𝐵 (𝑛𝑤𝑤𝑑))
138132, 133, 137, 128syl3anbrc 1344 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ⟨𝑛, 𝑑⟩ ∈ 𝑆)
139 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ⟨𝑛, 𝑑⟩ → (1st𝑥) = (1st ‘⟨𝑛, 𝑑⟩))
140 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ⟨𝑛, 𝑑⟩ → (𝑓𝑥) = (𝑓‘⟨𝑛, 𝑑⟩))
141139, 140sseq12d 3983 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ⟨𝑛, 𝑑⟩ → ((1st𝑥) ⊆ (𝑓𝑥) ↔ (1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩)))
142 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ⟨𝑛, 𝑑⟩ → (2nd𝑥) = (2nd ‘⟨𝑛, 𝑑⟩))
143140, 142sseq12d 3983 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ⟨𝑛, 𝑑⟩ → ((𝑓𝑥) ⊆ (2nd𝑥) ↔ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩)))
144141, 143anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ⟨𝑛, 𝑑⟩ → (((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) ↔ ((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩))))
145144rspcv 3587 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑛, 𝑑⟩ ∈ 𝑆 → (∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) → ((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩))))
146138, 145syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) → ((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩))))
147116, 117op1st 7979 . . . . . . . . . . . . . . . . . . . . . . . 24 (1st ‘⟨𝑛, 𝑑⟩) = 𝑛
148147sseq1i 3978 . . . . . . . . . . . . . . . . . . . . . . 23 ((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ↔ 𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩))
149116, 117op2nd 7980 . . . . . . . . . . . . . . . . . . . . . . . 24 (2nd ‘⟨𝑛, 𝑑⟩) = 𝑑
150149sseq2i 3979 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩) ↔ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)
151148, 150anbi12i 628 . . . . . . . . . . . . . . . . . . . . . 22 (((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩)) ↔ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑))
152 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → 𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩))
153 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚)) → 𝑡𝑛)
154153ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → 𝑡𝑛)
155152, 154sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → 𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩))
156 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)
157 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝑑𝑜)
158157ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → 𝑑𝑜)
159156, 158sstrd 3960 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)
160155, 159jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜))
161160ex 412 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ((𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))
162151, 161biimtrid 242 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))
163146, 162syldc 48 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) → ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))
164163exp4c 432 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) → ((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) → ((𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑)) → ((𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))))
165164ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜)) → ((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) → ((𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑)) → ((𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))))
166165adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → ((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) → ((𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑)) → ((𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))))
167166imp41 425 . . . . . . . . . . . . . . . 16 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜))
168 eleq2 2818 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑓‘⟨𝑛, 𝑑⟩) → (𝑡𝑏𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩)))
169 sseq1 3975 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑓‘⟨𝑛, 𝑑⟩) → (𝑏𝑜 ↔ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜))
170168, 169anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑓‘⟨𝑛, 𝑑⟩) → ((𝑡𝑏𝑏𝑜) ↔ (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))
171170rspcev 3591 . . . . . . . . . . . . . . . 16 (((𝑓‘⟨𝑛, 𝑑⟩) ∈ ran 𝑓 ∧ (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
172131, 167, 171syl2anc 584 . . . . . . . . . . . . . . 15 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
17399, 172rexlimddv 3141 . . . . . . . . . . . . . 14 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
17489, 173rexlimddv 3141 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
17575, 174rexlimddv 3141 . . . . . . . . . . . 12 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
176175expr 456 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ((𝑜𝐽𝑡𝑜) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜)))
177176ralrimivv 3179 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ∀𝑜𝐽𝑡𝑜𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
178 basgen2 22883 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ran 𝑓𝐽 ∧ ∀𝑜𝐽𝑡𝑜𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜)) → (topGen‘ran 𝑓) = 𝐽)
17961, 68, 177, 178syl3anc 1373 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → (topGen‘ran 𝑓) = 𝐽)
180179, 61eqeltrd 2829 . . . . . . . 8 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → (topGen‘ran 𝑓) ∈ Top)
181 tgclb 22864 . . . . . . . 8 (ran 𝑓 ∈ TopBases ↔ (topGen‘ran 𝑓) ∈ Top)
182180, 181sylibr 234 . . . . . . 7 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓 ∈ TopBases)
183 omelon 9606 . . . . . . . . . 10 ω ∈ On
18424adantr 480 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝑆 ≼ ω)
185 ondomen 9997 . . . . . . . . . 10 ((ω ∈ On ∧ 𝑆 ≼ ω) → 𝑆 ∈ dom card)
186183, 184, 185sylancr 587 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝑆 ∈ dom card)
187100ad2antrl 728 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝑓 Fn 𝑆)
188 dffn4 6781 . . . . . . . . . 10 (𝑓 Fn 𝑆𝑓:𝑆onto→ran 𝑓)
189187, 188sylib 218 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝑓:𝑆onto→ran 𝑓)
190 fodomnum 10017 . . . . . . . . 9 (𝑆 ∈ dom card → (𝑓:𝑆onto→ran 𝑓 → ran 𝑓𝑆))
191186, 189, 190sylc 65 . . . . . . . 8 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓𝑆)
192 domtr 8981 . . . . . . . 8 ((ran 𝑓𝑆𝑆 ≼ ω) → ran 𝑓 ≼ ω)
193191, 184, 192syl2anc 584 . . . . . . 7 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓 ≼ ω)
194179eqcomd 2736 . . . . . . 7 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝐽 = (topGen‘ran 𝑓))
195 breq1 5113 . . . . . . . . 9 (𝑏 = ran 𝑓 → (𝑏 ≼ ω ↔ ran 𝑓 ≼ ω))
196 sseq1 3975 . . . . . . . . 9 (𝑏 = ran 𝑓 → (𝑏𝐵 ↔ ran 𝑓𝐵))
197 fveq2 6861 . . . . . . . . . 10 (𝑏 = ran 𝑓 → (topGen‘𝑏) = (topGen‘ran 𝑓))
198197eqeq2d 2741 . . . . . . . . 9 (𝑏 = ran 𝑓 → (𝐽 = (topGen‘𝑏) ↔ 𝐽 = (topGen‘ran 𝑓)))
199195, 196, 1983anbi123d 1438 . . . . . . . 8 (𝑏 = ran 𝑓 → ((𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)) ↔ (ran 𝑓 ≼ ω ∧ ran 𝑓𝐵𝐽 = (topGen‘ran 𝑓))))
200199rspcev 3591 . . . . . . 7 ((ran 𝑓 ∈ TopBases ∧ (ran 𝑓 ≼ ω ∧ ran 𝑓𝐵𝐽 = (topGen‘ran 𝑓))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
201182, 193, 63, 194, 200syl13anc 1374 . . . . . 6 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
202201ex 412 . . . . 5 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏))))
20358, 202sylbid 240 . . . 4 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ((𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏))))
204203exlimdv 1933 . . 3 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → (∃𝑓(𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏))))
20555, 204mpd 15 . 2 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
2063, 205rexlimddv 3141 1 ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917  cop 4598   class class class wbr 5110  {copab 5172   I cid 5535   × cxp 5639  dom cdm 5641  ran crn 5642  Rel wrel 5646  Oncon0 6335   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  ωcom 7845  1st c1st 7969  2nd c2nd 7970  cen 8918  cdom 8919  cardccrd 9895  topGenctg 17407  Topctop 22787  TopBasesctb 22839  2ndωc2ndc 23332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-oi 9470  df-card 9899  df-acn 9902  df-topgen 17413  df-top 22788  df-bases 22840  df-2ndc 23334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator