MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcctbss Structured version   Visualization version   GIF version

Theorem 2ndcctbss 22888
Description: If a topology is second-countable, every base has a countable subset which is a base. Exercise 16B2 in Willard. (Contributed by Jeff Hankins, 28-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
2ndcctbss.1 𝐽 = (topGen‘𝐵)
2ndcctbss.2 𝑆 = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣))}
Assertion
Ref Expression
2ndcctbss ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
Distinct variable groups:   𝑏,𝑐,𝑢,𝑣,𝑤,𝐵   𝐽,𝑏,𝑐
Allowed substitution hints:   𝑆(𝑤,𝑣,𝑢,𝑏,𝑐)   𝐽(𝑤,𝑣,𝑢)

Proof of Theorem 2ndcctbss
Dummy variables 𝑑 𝑓 𝑚 𝑛 𝑜 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . 3 ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → 𝐽 ∈ 2ndω)
2 is2ndc 22879 . . 3 (𝐽 ∈ 2ndω ↔ ∃𝑐 ∈ TopBases (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))
31, 2sylib 217 . 2 ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → ∃𝑐 ∈ TopBases (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))
4 vex 3477 . . . . . . 7 𝑐 ∈ V
54, 4xpex 7723 . . . . . 6 (𝑐 × 𝑐) ∈ V
6 3simpa 1148 . . . . . . . 8 ((𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣)) → (𝑢𝑐𝑣𝑐))
76ssopab2i 5543 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣))} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐)}
8 2ndcctbss.2 . . . . . . 7 𝑆 = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣))}
9 df-xp 5675 . . . . . . 7 (𝑐 × 𝑐) = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐)}
107, 8, 93sstr4i 4021 . . . . . 6 𝑆 ⊆ (𝑐 × 𝑐)
11 ssdomg 8979 . . . . . 6 ((𝑐 × 𝑐) ∈ V → (𝑆 ⊆ (𝑐 × 𝑐) → 𝑆 ≼ (𝑐 × 𝑐)))
125, 10, 11mp2 9 . . . . 5 𝑆 ≼ (𝑐 × 𝑐)
134xpdom1 9054 . . . . . . . . 9 (𝑐 ≼ ω → (𝑐 × 𝑐) ≼ (ω × 𝑐))
14 omex 9620 . . . . . . . . . 10 ω ∈ V
1514xpdom2 9050 . . . . . . . . 9 (𝑐 ≼ ω → (ω × 𝑐) ≼ (ω × ω))
16 domtr 8986 . . . . . . . . 9 (((𝑐 × 𝑐) ≼ (ω × 𝑐) ∧ (ω × 𝑐) ≼ (ω × ω)) → (𝑐 × 𝑐) ≼ (ω × ω))
1713, 15, 16syl2anc 584 . . . . . . . 8 (𝑐 ≼ ω → (𝑐 × 𝑐) ≼ (ω × ω))
18 xpomen 9992 . . . . . . . 8 (ω × ω) ≈ ω
19 domentr 8992 . . . . . . . 8 (((𝑐 × 𝑐) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝑐 × 𝑐) ≼ ω)
2017, 18, 19sylancl 586 . . . . . . 7 (𝑐 ≼ ω → (𝑐 × 𝑐) ≼ ω)
2120adantr 481 . . . . . 6 ((𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽) → (𝑐 × 𝑐) ≼ ω)
2221ad2antll 727 . . . . 5 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → (𝑐 × 𝑐) ≼ ω)
23 domtr 8986 . . . . 5 ((𝑆 ≼ (𝑐 × 𝑐) ∧ (𝑐 × 𝑐) ≼ ω) → 𝑆 ≼ ω)
2412, 22, 23sylancr 587 . . . 4 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → 𝑆 ≼ ω)
258relopabiv 5812 . . . . . . . . 9 Rel 𝑆
26 simpr 485 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → 𝑥𝑆)
27 1st2nd 8007 . . . . . . . . 9 ((Rel 𝑆𝑥𝑆) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2825, 26, 27sylancr 587 . . . . . . . 8 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2928, 26eqeltrrd 2833 . . . . . . 7 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑆)
30 df-br 5142 . . . . . . . . 9 ((1st𝑥)𝑆(2nd𝑥) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑆)
31 fvex 6891 . . . . . . . . . 10 (1st𝑥) ∈ V
32 fvex 6891 . . . . . . . . . 10 (2nd𝑥) ∈ V
33 simpl 483 . . . . . . . . . . . 12 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → 𝑢 = (1st𝑥))
3433eleq1d 2817 . . . . . . . . . . 11 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → (𝑢𝑐 ↔ (1st𝑥) ∈ 𝑐))
35 simpr 485 . . . . . . . . . . . 12 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → 𝑣 = (2nd𝑥))
3635eleq1d 2817 . . . . . . . . . . 11 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → (𝑣𝑐 ↔ (2nd𝑥) ∈ 𝑐))
37 sseq1 4003 . . . . . . . . . . . . 13 (𝑢 = (1st𝑥) → (𝑢𝑤 ↔ (1st𝑥) ⊆ 𝑤))
38 sseq2 4004 . . . . . . . . . . . . 13 (𝑣 = (2nd𝑥) → (𝑤𝑣𝑤 ⊆ (2nd𝑥)))
3937, 38bi2anan9 637 . . . . . . . . . . . 12 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → ((𝑢𝑤𝑤𝑣) ↔ ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))))
4039rexbidv 3177 . . . . . . . . . . 11 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → (∃𝑤𝐵 (𝑢𝑤𝑤𝑣) ↔ ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))))
4134, 36, 403anbi123d 1436 . . . . . . . . . 10 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → ((𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣)) ↔ ((1st𝑥) ∈ 𝑐 ∧ (2nd𝑥) ∈ 𝑐 ∧ ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))))
4231, 32, 41, 8braba 5530 . . . . . . . . 9 ((1st𝑥)𝑆(2nd𝑥) ↔ ((1st𝑥) ∈ 𝑐 ∧ (2nd𝑥) ∈ 𝑐 ∧ ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))))
4330, 42bitr3i 276 . . . . . . . 8 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑆 ↔ ((1st𝑥) ∈ 𝑐 ∧ (2nd𝑥) ∈ 𝑐 ∧ ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))))
4443simp3bi 1147 . . . . . . 7 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑆 → ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))
4529, 44syl 17 . . . . . 6 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))
46 fvi 6953 . . . . . . . 8 (𝐵 ∈ TopBases → ( I ‘𝐵) = 𝐵)
4746ad3antrrr 728 . . . . . . 7 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → ( I ‘𝐵) = 𝐵)
4847rexeqdv 3325 . . . . . 6 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → (∃𝑤 ∈ ( I ‘𝐵)((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)) ↔ ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))))
4945, 48mpbird 256 . . . . 5 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → ∃𝑤 ∈ ( I ‘𝐵)((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))
5049ralrimiva 3145 . . . 4 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ∀𝑥𝑆𝑤 ∈ ( I ‘𝐵)((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))
51 fvex 6891 . . . . 5 ( I ‘𝐵) ∈ V
52 sseq2 4004 . . . . . 6 (𝑤 = (𝑓𝑥) → ((1st𝑥) ⊆ 𝑤 ↔ (1st𝑥) ⊆ (𝑓𝑥)))
53 sseq1 4003 . . . . . 6 (𝑤 = (𝑓𝑥) → (𝑤 ⊆ (2nd𝑥) ↔ (𝑓𝑥) ⊆ (2nd𝑥)))
5452, 53anbi12d 631 . . . . 5 (𝑤 = (𝑓𝑥) → (((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)) ↔ ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))))
5551, 54axcc4dom 10418 . . . 4 ((𝑆 ≼ ω ∧ ∀𝑥𝑆𝑤 ∈ ( I ‘𝐵)((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))) → ∃𝑓(𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))))
5624, 50, 55syl2anc 584 . . 3 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ∃𝑓(𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))))
5746ad2antrr 724 . . . . . . 7 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ( I ‘𝐵) = 𝐵)
5857feq3d 6691 . . . . . 6 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → (𝑓:𝑆⟶( I ‘𝐵) ↔ 𝑓:𝑆𝐵))
5958anbi1d 630 . . . . 5 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ((𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ↔ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))))
60 2ndctop 22880 . . . . . . . . . . . 12 (𝐽 ∈ 2ndω → 𝐽 ∈ Top)
6160adantl 482 . . . . . . . . . . 11 ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → 𝐽 ∈ Top)
6261ad2antrr 724 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝐽 ∈ Top)
63 frn 6711 . . . . . . . . . . . 12 (𝑓:𝑆𝐵 → ran 𝑓𝐵)
6463ad2antrl 726 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓𝐵)
65 bastg 22398 . . . . . . . . . . . . 13 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
6665ad3antrrr 728 . . . . . . . . . . . 12 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝐵 ⊆ (topGen‘𝐵))
67 2ndcctbss.1 . . . . . . . . . . . 12 𝐽 = (topGen‘𝐵)
6866, 67sseqtrrdi 4029 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝐵𝐽)
6964, 68sstrd 3988 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓𝐽)
70 simprrl 779 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → 𝑜𝐽)
71 simprr 771 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽)) → (topGen‘𝑐) = 𝐽)
7271ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → (topGen‘𝑐) = 𝐽)
7370, 72eleqtrrd 2835 . . . . . . . . . . . . . 14 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → 𝑜 ∈ (topGen‘𝑐))
74 simprrr 780 . . . . . . . . . . . . . 14 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → 𝑡𝑜)
75 tg2 22397 . . . . . . . . . . . . . 14 ((𝑜 ∈ (topGen‘𝑐) ∧ 𝑡𝑜) → ∃𝑑𝑐 (𝑡𝑑𝑑𝑜))
7673, 74, 75syl2anc 584 . . . . . . . . . . . . 13 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → ∃𝑑𝑐 (𝑡𝑑𝑑𝑜))
77 bastg 22398 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ TopBases → 𝑐 ⊆ (topGen‘𝑐))
7877ad2antrl 726 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → 𝑐 ⊆ (topGen‘𝑐))
7978ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑐 ⊆ (topGen‘𝑐))
8067eqeq2i 2744 . . . . . . . . . . . . . . . . . . . . 21 ((topGen‘𝑐) = 𝐽 ↔ (topGen‘𝑐) = (topGen‘𝐵))
8180biimpi 215 . . . . . . . . . . . . . . . . . . . 20 ((topGen‘𝑐) = 𝐽 → (topGen‘𝑐) = (topGen‘𝐵))
8281adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽) → (topGen‘𝑐) = (topGen‘𝐵))
8382ad2antll 727 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → (topGen‘𝑐) = (topGen‘𝐵))
8483ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → (topGen‘𝑐) = (topGen‘𝐵))
8579, 84sseqtrd 4018 . . . . . . . . . . . . . . . 16 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑐 ⊆ (topGen‘𝐵))
86 simprl 769 . . . . . . . . . . . . . . . 16 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑑𝑐)
8785, 86sseldd 3979 . . . . . . . . . . . . . . 15 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑑 ∈ (topGen‘𝐵))
88 simprrl 779 . . . . . . . . . . . . . . 15 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑡𝑑)
89 tg2 22397 . . . . . . . . . . . . . . 15 ((𝑑 ∈ (topGen‘𝐵) ∧ 𝑡𝑑) → ∃𝑚𝐵 (𝑡𝑚𝑚𝑑))
9087, 88, 89syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → ∃𝑚𝐵 (𝑡𝑚𝑚𝑑))
9165ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → 𝐵 ⊆ (topGen‘𝐵))
9291ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝐵 ⊆ (topGen‘𝐵))
9372ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → (topGen‘𝑐) = 𝐽)
9493, 67eqtr2di 2788 . . . . . . . . . . . . . . . . . 18 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → (topGen‘𝐵) = (topGen‘𝑐))
9592, 94sseqtrd 4018 . . . . . . . . . . . . . . . . 17 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝐵 ⊆ (topGen‘𝑐))
96 simprl 769 . . . . . . . . . . . . . . . . 17 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝑚𝐵)
9795, 96sseldd 3979 . . . . . . . . . . . . . . . 16 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝑚 ∈ (topGen‘𝑐))
98 simprrl 779 . . . . . . . . . . . . . . . 16 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝑡𝑚)
99 tg2 22397 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (topGen‘𝑐) ∧ 𝑡𝑚) → ∃𝑛𝑐 (𝑡𝑛𝑛𝑚))
10097, 98, 99syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → ∃𝑛𝑐 (𝑡𝑛𝑛𝑚))
101 ffn 6704 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝑆𝐵𝑓 Fn 𝑆)
102101ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜)) → 𝑓 Fn 𝑆)
103102ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑓 Fn 𝑆)
104103ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑓 Fn 𝑆)
105 simprl 769 . . . . . . . . . . . . . . . . . 18 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑛𝑐)
10686ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑑𝑐)
107 simplrl 775 . . . . . . . . . . . . . . . . . . 19 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑚𝐵)
108 simprrr 780 . . . . . . . . . . . . . . . . . . 19 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑛𝑚)
109 simprr 771 . . . . . . . . . . . . . . . . . . . 20 ((𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑)) → 𝑚𝑑)
110109ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑚𝑑)
111 sseq2 4004 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑚 → (𝑛𝑤𝑛𝑚))
112 sseq1 4003 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑚 → (𝑤𝑑𝑚𝑑))
113111, 112anbi12d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑚 → ((𝑛𝑤𝑤𝑑) ↔ (𝑛𝑚𝑚𝑑)))
114113rspcev 3609 . . . . . . . . . . . . . . . . . . 19 ((𝑚𝐵 ∧ (𝑛𝑚𝑚𝑑)) → ∃𝑤𝐵 (𝑛𝑤𝑤𝑑))
115107, 108, 110, 114syl12anc 835 . . . . . . . . . . . . . . . . . 18 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ∃𝑤𝐵 (𝑛𝑤𝑤𝑑))
116 df-br 5142 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑆𝑑 ↔ ⟨𝑛, 𝑑⟩ ∈ 𝑆)
117 vex 3477 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ V
118 vex 3477 . . . . . . . . . . . . . . . . . . . 20 𝑑 ∈ V
119 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢 = 𝑛𝑣 = 𝑑) → 𝑢 = 𝑛)
120119eleq1d 2817 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 = 𝑛𝑣 = 𝑑) → (𝑢𝑐𝑛𝑐))
121 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢 = 𝑛𝑣 = 𝑑) → 𝑣 = 𝑑)
122121eleq1d 2817 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 = 𝑛𝑣 = 𝑑) → (𝑣𝑐𝑑𝑐))
123 sseq1 4003 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑛 → (𝑢𝑤𝑛𝑤))
124 sseq2 4004 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝑑 → (𝑤𝑣𝑤𝑑))
125123, 124bi2anan9 637 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢 = 𝑛𝑣 = 𝑑) → ((𝑢𝑤𝑤𝑣) ↔ (𝑛𝑤𝑤𝑑)))
126125rexbidv 3177 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 = 𝑛𝑣 = 𝑑) → (∃𝑤𝐵 (𝑢𝑤𝑤𝑣) ↔ ∃𝑤𝐵 (𝑛𝑤𝑤𝑑)))
127120, 122, 1263anbi123d 1436 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 = 𝑛𝑣 = 𝑑) → ((𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣)) ↔ (𝑛𝑐𝑑𝑐 ∧ ∃𝑤𝐵 (𝑛𝑤𝑤𝑑))))
128117, 118, 127, 8braba 5530 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑆𝑑 ↔ (𝑛𝑐𝑑𝑐 ∧ ∃𝑤𝐵 (𝑛𝑤𝑤𝑑)))
129116, 128bitr3i 276 . . . . . . . . . . . . . . . . . 18 (⟨𝑛, 𝑑⟩ ∈ 𝑆 ↔ (𝑛𝑐𝑑𝑐 ∧ ∃𝑤𝐵 (𝑛𝑤𝑤𝑑)))
130105, 106, 115, 129syl3anbrc 1343 . . . . . . . . . . . . . . . . 17 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ⟨𝑛, 𝑑⟩ ∈ 𝑆)
131 fnfvelrn 7067 . . . . . . . . . . . . . . . . 17 ((𝑓 Fn 𝑆 ∧ ⟨𝑛, 𝑑⟩ ∈ 𝑆) → (𝑓‘⟨𝑛, 𝑑⟩) ∈ ran 𝑓)
132104, 130, 131syl2anc 584 . . . . . . . . . . . . . . . 16 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (𝑓‘⟨𝑛, 𝑑⟩) ∈ ran 𝑓)
133 simprl 769 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑛𝑐)
134 simplll 773 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑑𝑐)
135 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑚𝐵)
136 simprrr 780 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑛𝑚)
137109ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑚𝑑)
138135, 136, 137, 114syl12anc 835 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ∃𝑤𝐵 (𝑛𝑤𝑤𝑑))
139133, 134, 138, 129syl3anbrc 1343 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ⟨𝑛, 𝑑⟩ ∈ 𝑆)
140 fveq2 6878 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ⟨𝑛, 𝑑⟩ → (1st𝑥) = (1st ‘⟨𝑛, 𝑑⟩))
141 fveq2 6878 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ⟨𝑛, 𝑑⟩ → (𝑓𝑥) = (𝑓‘⟨𝑛, 𝑑⟩))
142140, 141sseq12d 4011 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ⟨𝑛, 𝑑⟩ → ((1st𝑥) ⊆ (𝑓𝑥) ↔ (1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩)))
143 fveq2 6878 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ⟨𝑛, 𝑑⟩ → (2nd𝑥) = (2nd ‘⟨𝑛, 𝑑⟩))
144141, 143sseq12d 4011 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ⟨𝑛, 𝑑⟩ → ((𝑓𝑥) ⊆ (2nd𝑥) ↔ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩)))
145142, 144anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ⟨𝑛, 𝑑⟩ → (((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) ↔ ((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩))))
146145rspcv 3605 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑛, 𝑑⟩ ∈ 𝑆 → (∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) → ((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩))))
147139, 146syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) → ((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩))))
148117, 118op1st 7965 . . . . . . . . . . . . . . . . . . . . . . . 24 (1st ‘⟨𝑛, 𝑑⟩) = 𝑛
149148sseq1i 4006 . . . . . . . . . . . . . . . . . . . . . . 23 ((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ↔ 𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩))
150117, 118op2nd 7966 . . . . . . . . . . . . . . . . . . . . . . . 24 (2nd ‘⟨𝑛, 𝑑⟩) = 𝑑
151150sseq2i 4007 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩) ↔ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)
152149, 151anbi12i 627 . . . . . . . . . . . . . . . . . . . . . 22 (((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩)) ↔ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑))
153 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → 𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩))
154 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚)) → 𝑡𝑛)
155154ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → 𝑡𝑛)
156153, 155sseldd 3979 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → 𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩))
157 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)
158 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝑑𝑜)
159158ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → 𝑑𝑜)
160157, 159sstrd 3988 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)
161156, 160jca 512 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜))
162161ex 413 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ((𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))
163152, 162biimtrid 241 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))
164147, 163syldc 48 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) → ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))
165164exp4c 433 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) → ((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) → ((𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑)) → ((𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))))
166165ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜)) → ((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) → ((𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑)) → ((𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))))
167166adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → ((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) → ((𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑)) → ((𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))))
168167imp41 426 . . . . . . . . . . . . . . . 16 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜))
169 eleq2 2821 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑓‘⟨𝑛, 𝑑⟩) → (𝑡𝑏𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩)))
170 sseq1 4003 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑓‘⟨𝑛, 𝑑⟩) → (𝑏𝑜 ↔ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜))
171169, 170anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑓‘⟨𝑛, 𝑑⟩) → ((𝑡𝑏𝑏𝑜) ↔ (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))
172171rspcev 3609 . . . . . . . . . . . . . . . 16 (((𝑓‘⟨𝑛, 𝑑⟩) ∈ ran 𝑓 ∧ (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
173132, 168, 172syl2anc 584 . . . . . . . . . . . . . . 15 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
174100, 173rexlimddv 3160 . . . . . . . . . . . . . 14 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
17590, 174rexlimddv 3160 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
17676, 175rexlimddv 3160 . . . . . . . . . . . 12 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
177176expr 457 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ((𝑜𝐽𝑡𝑜) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜)))
178177ralrimivv 3197 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ∀𝑜𝐽𝑡𝑜𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
179 basgen2 22421 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ran 𝑓𝐽 ∧ ∀𝑜𝐽𝑡𝑜𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜)) → (topGen‘ran 𝑓) = 𝐽)
18062, 69, 178, 179syl3anc 1371 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → (topGen‘ran 𝑓) = 𝐽)
181180, 62eqeltrd 2832 . . . . . . . 8 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → (topGen‘ran 𝑓) ∈ Top)
182 tgclb 22402 . . . . . . . 8 (ran 𝑓 ∈ TopBases ↔ (topGen‘ran 𝑓) ∈ Top)
183181, 182sylibr 233 . . . . . . 7 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓 ∈ TopBases)
184 omelon 9623 . . . . . . . . . 10 ω ∈ On
18524adantr 481 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝑆 ≼ ω)
186 ondomen 10014 . . . . . . . . . 10 ((ω ∈ On ∧ 𝑆 ≼ ω) → 𝑆 ∈ dom card)
187184, 185, 186sylancr 587 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝑆 ∈ dom card)
188101ad2antrl 726 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝑓 Fn 𝑆)
189 dffn4 6798 . . . . . . . . . 10 (𝑓 Fn 𝑆𝑓:𝑆onto→ran 𝑓)
190188, 189sylib 217 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝑓:𝑆onto→ran 𝑓)
191 fodomnum 10034 . . . . . . . . 9 (𝑆 ∈ dom card → (𝑓:𝑆onto→ran 𝑓 → ran 𝑓𝑆))
192187, 190, 191sylc 65 . . . . . . . 8 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓𝑆)
193 domtr 8986 . . . . . . . 8 ((ran 𝑓𝑆𝑆 ≼ ω) → ran 𝑓 ≼ ω)
194192, 185, 193syl2anc 584 . . . . . . 7 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓 ≼ ω)
195180eqcomd 2737 . . . . . . 7 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝐽 = (topGen‘ran 𝑓))
196 breq1 5144 . . . . . . . . 9 (𝑏 = ran 𝑓 → (𝑏 ≼ ω ↔ ran 𝑓 ≼ ω))
197 sseq1 4003 . . . . . . . . 9 (𝑏 = ran 𝑓 → (𝑏𝐵 ↔ ran 𝑓𝐵))
198 fveq2 6878 . . . . . . . . . 10 (𝑏 = ran 𝑓 → (topGen‘𝑏) = (topGen‘ran 𝑓))
199198eqeq2d 2742 . . . . . . . . 9 (𝑏 = ran 𝑓 → (𝐽 = (topGen‘𝑏) ↔ 𝐽 = (topGen‘ran 𝑓)))
200196, 197, 1993anbi123d 1436 . . . . . . . 8 (𝑏 = ran 𝑓 → ((𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)) ↔ (ran 𝑓 ≼ ω ∧ ran 𝑓𝐵𝐽 = (topGen‘ran 𝑓))))
201200rspcev 3609 . . . . . . 7 ((ran 𝑓 ∈ TopBases ∧ (ran 𝑓 ≼ ω ∧ ran 𝑓𝐵𝐽 = (topGen‘ran 𝑓))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
202183, 194, 64, 195, 201syl13anc 1372 . . . . . 6 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
203202ex 413 . . . . 5 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏))))
20459, 203sylbid 239 . . . 4 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ((𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏))))
205204exlimdv 1936 . . 3 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → (∃𝑓(𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏))))
20656, 205mpd 15 . 2 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
2073, 206rexlimddv 3160 1 ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3060  wrex 3069  Vcvv 3473  wss 3944  cop 4628   class class class wbr 5141  {copab 5203   I cid 5566   × cxp 5667  dom cdm 5669  ran crn 5670  Rel wrel 5674  Oncon0 6353   Fn wfn 6527  wf 6528  ontowfo 6530  cfv 6532  ωcom 7838  1st c1st 7955  2nd c2nd 7956  cen 8919  cdom 8920  cardccrd 9912  topGenctg 17365  Topctop 22324  TopBasesctb 22377  2ndωc2ndc 22871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-cc 10412
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-oi 9487  df-card 9916  df-acn 9919  df-topgen 17371  df-top 22325  df-bases 22378  df-2ndc 22873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator