MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcctbss Structured version   Visualization version   GIF version

Theorem 2ndcctbss 22065
Description: If a topology is second-countable, every base has a countable subset which is a base. Exercise 16B2 in Willard. (Contributed by Jeff Hankins, 28-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
2ndcctbss.1 𝐽 = (topGen‘𝐵)
2ndcctbss.2 𝑆 = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣))}
Assertion
Ref Expression
2ndcctbss ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
Distinct variable groups:   𝑏,𝑐,𝑢,𝑣,𝑤,𝐵   𝐽,𝑏,𝑐
Allowed substitution hints:   𝑆(𝑤,𝑣,𝑢,𝑏,𝑐)   𝐽(𝑤,𝑣,𝑢)

Proof of Theorem 2ndcctbss
Dummy variables 𝑑 𝑓 𝑚 𝑛 𝑜 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . 3 ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → 𝐽 ∈ 2ndω)
2 is2ndc 22056 . . 3 (𝐽 ∈ 2ndω ↔ ∃𝑐 ∈ TopBases (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))
31, 2sylib 220 . 2 ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → ∃𝑐 ∈ TopBases (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))
4 vex 3499 . . . . . . 7 𝑐 ∈ V
54, 4xpex 7478 . . . . . 6 (𝑐 × 𝑐) ∈ V
6 3simpa 1144 . . . . . . . 8 ((𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣)) → (𝑢𝑐𝑣𝑐))
76ssopab2i 5439 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣))} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐)}
8 2ndcctbss.2 . . . . . . 7 𝑆 = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣))}
9 df-xp 5563 . . . . . . 7 (𝑐 × 𝑐) = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑐𝑣𝑐)}
107, 8, 93sstr4i 4012 . . . . . 6 𝑆 ⊆ (𝑐 × 𝑐)
11 ssdomg 8557 . . . . . 6 ((𝑐 × 𝑐) ∈ V → (𝑆 ⊆ (𝑐 × 𝑐) → 𝑆 ≼ (𝑐 × 𝑐)))
125, 10, 11mp2 9 . . . . 5 𝑆 ≼ (𝑐 × 𝑐)
134xpdom1 8618 . . . . . . . . 9 (𝑐 ≼ ω → (𝑐 × 𝑐) ≼ (ω × 𝑐))
14 omex 9108 . . . . . . . . . 10 ω ∈ V
1514xpdom2 8614 . . . . . . . . 9 (𝑐 ≼ ω → (ω × 𝑐) ≼ (ω × ω))
16 domtr 8564 . . . . . . . . 9 (((𝑐 × 𝑐) ≼ (ω × 𝑐) ∧ (ω × 𝑐) ≼ (ω × ω)) → (𝑐 × 𝑐) ≼ (ω × ω))
1713, 15, 16syl2anc 586 . . . . . . . 8 (𝑐 ≼ ω → (𝑐 × 𝑐) ≼ (ω × ω))
18 xpomen 9443 . . . . . . . 8 (ω × ω) ≈ ω
19 domentr 8570 . . . . . . . 8 (((𝑐 × 𝑐) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝑐 × 𝑐) ≼ ω)
2017, 18, 19sylancl 588 . . . . . . 7 (𝑐 ≼ ω → (𝑐 × 𝑐) ≼ ω)
2120adantr 483 . . . . . 6 ((𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽) → (𝑐 × 𝑐) ≼ ω)
2221ad2antll 727 . . . . 5 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → (𝑐 × 𝑐) ≼ ω)
23 domtr 8564 . . . . 5 ((𝑆 ≼ (𝑐 × 𝑐) ∧ (𝑐 × 𝑐) ≼ ω) → 𝑆 ≼ ω)
2412, 22, 23sylancr 589 . . . 4 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → 𝑆 ≼ ω)
258relopabi 5696 . . . . . . . . 9 Rel 𝑆
26 simpr 487 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → 𝑥𝑆)
27 1st2nd 7740 . . . . . . . . 9 ((Rel 𝑆𝑥𝑆) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2825, 26, 27sylancr 589 . . . . . . . 8 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2928, 26eqeltrrd 2916 . . . . . . 7 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑆)
30 df-br 5069 . . . . . . . . 9 ((1st𝑥)𝑆(2nd𝑥) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑆)
31 fvex 6685 . . . . . . . . . 10 (1st𝑥) ∈ V
32 fvex 6685 . . . . . . . . . 10 (2nd𝑥) ∈ V
33 simpl 485 . . . . . . . . . . . 12 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → 𝑢 = (1st𝑥))
3433eleq1d 2899 . . . . . . . . . . 11 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → (𝑢𝑐 ↔ (1st𝑥) ∈ 𝑐))
35 simpr 487 . . . . . . . . . . . 12 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → 𝑣 = (2nd𝑥))
3635eleq1d 2899 . . . . . . . . . . 11 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → (𝑣𝑐 ↔ (2nd𝑥) ∈ 𝑐))
37 sseq1 3994 . . . . . . . . . . . . 13 (𝑢 = (1st𝑥) → (𝑢𝑤 ↔ (1st𝑥) ⊆ 𝑤))
38 sseq2 3995 . . . . . . . . . . . . 13 (𝑣 = (2nd𝑥) → (𝑤𝑣𝑤 ⊆ (2nd𝑥)))
3937, 38bi2anan9 637 . . . . . . . . . . . 12 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → ((𝑢𝑤𝑤𝑣) ↔ ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))))
4039rexbidv 3299 . . . . . . . . . . 11 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → (∃𝑤𝐵 (𝑢𝑤𝑤𝑣) ↔ ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))))
4134, 36, 403anbi123d 1432 . . . . . . . . . 10 ((𝑢 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) → ((𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣)) ↔ ((1st𝑥) ∈ 𝑐 ∧ (2nd𝑥) ∈ 𝑐 ∧ ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))))
4231, 32, 41, 8braba 5426 . . . . . . . . 9 ((1st𝑥)𝑆(2nd𝑥) ↔ ((1st𝑥) ∈ 𝑐 ∧ (2nd𝑥) ∈ 𝑐 ∧ ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))))
4330, 42bitr3i 279 . . . . . . . 8 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑆 ↔ ((1st𝑥) ∈ 𝑐 ∧ (2nd𝑥) ∈ 𝑐 ∧ ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))))
4443simp3bi 1143 . . . . . . 7 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑆 → ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))
4529, 44syl 17 . . . . . 6 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))
46 fvi 6742 . . . . . . . 8 (𝐵 ∈ TopBases → ( I ‘𝐵) = 𝐵)
4746ad3antrrr 728 . . . . . . 7 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → ( I ‘𝐵) = 𝐵)
4847rexeqdv 3418 . . . . . 6 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → (∃𝑤 ∈ ( I ‘𝐵)((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)) ↔ ∃𝑤𝐵 ((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))))
4945, 48mpbird 259 . . . . 5 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ 𝑥𝑆) → ∃𝑤 ∈ ( I ‘𝐵)((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))
5049ralrimiva 3184 . . . 4 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ∀𝑥𝑆𝑤 ∈ ( I ‘𝐵)((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)))
51 fvex 6685 . . . . 5 ( I ‘𝐵) ∈ V
52 sseq2 3995 . . . . . 6 (𝑤 = (𝑓𝑥) → ((1st𝑥) ⊆ 𝑤 ↔ (1st𝑥) ⊆ (𝑓𝑥)))
53 sseq1 3994 . . . . . 6 (𝑤 = (𝑓𝑥) → (𝑤 ⊆ (2nd𝑥) ↔ (𝑓𝑥) ⊆ (2nd𝑥)))
5452, 53anbi12d 632 . . . . 5 (𝑤 = (𝑓𝑥) → (((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥)) ↔ ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))))
5551, 54axcc4dom 9865 . . . 4 ((𝑆 ≼ ω ∧ ∀𝑥𝑆𝑤 ∈ ( I ‘𝐵)((1st𝑥) ⊆ 𝑤𝑤 ⊆ (2nd𝑥))) → ∃𝑓(𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))))
5624, 50, 55syl2anc 586 . . 3 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ∃𝑓(𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))))
5746ad2antrr 724 . . . . . . 7 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ( I ‘𝐵) = 𝐵)
5857feq3d 6503 . . . . . 6 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → (𝑓:𝑆⟶( I ‘𝐵) ↔ 𝑓:𝑆𝐵))
5958anbi1d 631 . . . . 5 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ((𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ↔ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))))
60 2ndctop 22057 . . . . . . . . . . . 12 (𝐽 ∈ 2ndω → 𝐽 ∈ Top)
6160adantl 484 . . . . . . . . . . 11 ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → 𝐽 ∈ Top)
6261ad2antrr 724 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝐽 ∈ Top)
63 frn 6522 . . . . . . . . . . . 12 (𝑓:𝑆𝐵 → ran 𝑓𝐵)
6463ad2antrl 726 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓𝐵)
65 bastg 21576 . . . . . . . . . . . . 13 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
6665ad3antrrr 728 . . . . . . . . . . . 12 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝐵 ⊆ (topGen‘𝐵))
67 2ndcctbss.1 . . . . . . . . . . . 12 𝐽 = (topGen‘𝐵)
6866, 67sseqtrrdi 4020 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝐵𝐽)
6964, 68sstrd 3979 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓𝐽)
70 simprrl 779 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → 𝑜𝐽)
71 simprr 771 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽)) → (topGen‘𝑐) = 𝐽)
7271ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → (topGen‘𝑐) = 𝐽)
7370, 72eleqtrrd 2918 . . . . . . . . . . . . . 14 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → 𝑜 ∈ (topGen‘𝑐))
74 simprrr 780 . . . . . . . . . . . . . 14 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → 𝑡𝑜)
75 tg2 21575 . . . . . . . . . . . . . 14 ((𝑜 ∈ (topGen‘𝑐) ∧ 𝑡𝑜) → ∃𝑑𝑐 (𝑡𝑑𝑑𝑜))
7673, 74, 75syl2anc 586 . . . . . . . . . . . . 13 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → ∃𝑑𝑐 (𝑡𝑑𝑑𝑜))
77 bastg 21576 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ TopBases → 𝑐 ⊆ (topGen‘𝑐))
7877ad2antrl 726 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → 𝑐 ⊆ (topGen‘𝑐))
7978ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑐 ⊆ (topGen‘𝑐))
8067eqeq2i 2836 . . . . . . . . . . . . . . . . . . . . 21 ((topGen‘𝑐) = 𝐽 ↔ (topGen‘𝑐) = (topGen‘𝐵))
8180biimpi 218 . . . . . . . . . . . . . . . . . . . 20 ((topGen‘𝑐) = 𝐽 → (topGen‘𝑐) = (topGen‘𝐵))
8281adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽) → (topGen‘𝑐) = (topGen‘𝐵))
8382ad2antll 727 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → (topGen‘𝑐) = (topGen‘𝐵))
8483ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → (topGen‘𝑐) = (topGen‘𝐵))
8579, 84sseqtrd 4009 . . . . . . . . . . . . . . . 16 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑐 ⊆ (topGen‘𝐵))
86 simprl 769 . . . . . . . . . . . . . . . 16 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑑𝑐)
8785, 86sseldd 3970 . . . . . . . . . . . . . . 15 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑑 ∈ (topGen‘𝐵))
88 simprrl 779 . . . . . . . . . . . . . . 15 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑡𝑑)
89 tg2 21575 . . . . . . . . . . . . . . 15 ((𝑑 ∈ (topGen‘𝐵) ∧ 𝑡𝑑) → ∃𝑚𝐵 (𝑡𝑚𝑚𝑑))
9087, 88, 89syl2anc 586 . . . . . . . . . . . . . 14 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → ∃𝑚𝐵 (𝑡𝑚𝑚𝑑))
9165ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → 𝐵 ⊆ (topGen‘𝐵))
9291ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝐵 ⊆ (topGen‘𝐵))
9372ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → (topGen‘𝑐) = 𝐽)
9493, 67syl6req 2875 . . . . . . . . . . . . . . . . . 18 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → (topGen‘𝐵) = (topGen‘𝑐))
9592, 94sseqtrd 4009 . . . . . . . . . . . . . . . . 17 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝐵 ⊆ (topGen‘𝑐))
96 simprl 769 . . . . . . . . . . . . . . . . 17 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝑚𝐵)
9795, 96sseldd 3970 . . . . . . . . . . . . . . . 16 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝑚 ∈ (topGen‘𝑐))
98 simprrl 779 . . . . . . . . . . . . . . . 16 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝑡𝑚)
99 tg2 21575 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (topGen‘𝑐) ∧ 𝑡𝑚) → ∃𝑛𝑐 (𝑡𝑛𝑛𝑚))
10097, 98, 99syl2anc 586 . . . . . . . . . . . . . . 15 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → ∃𝑛𝑐 (𝑡𝑛𝑛𝑚))
101 ffn 6516 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝑆𝐵𝑓 Fn 𝑆)
102101ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜)) → 𝑓 Fn 𝑆)
103102ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → 𝑓 Fn 𝑆)
104103ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑓 Fn 𝑆)
105 simprl 769 . . . . . . . . . . . . . . . . . 18 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑛𝑐)
10686ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑑𝑐)
107 simplrl 775 . . . . . . . . . . . . . . . . . . 19 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑚𝐵)
108 simprrr 780 . . . . . . . . . . . . . . . . . . 19 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑛𝑚)
109 simprr 771 . . . . . . . . . . . . . . . . . . . 20 ((𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑)) → 𝑚𝑑)
110109ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑚𝑑)
111 sseq2 3995 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑚 → (𝑛𝑤𝑛𝑚))
112 sseq1 3994 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑚 → (𝑤𝑑𝑚𝑑))
113111, 112anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑚 → ((𝑛𝑤𝑤𝑑) ↔ (𝑛𝑚𝑚𝑑)))
114113rspcev 3625 . . . . . . . . . . . . . . . . . . 19 ((𝑚𝐵 ∧ (𝑛𝑚𝑚𝑑)) → ∃𝑤𝐵 (𝑛𝑤𝑤𝑑))
115107, 108, 110, 114syl12anc 834 . . . . . . . . . . . . . . . . . 18 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ∃𝑤𝐵 (𝑛𝑤𝑤𝑑))
116 df-br 5069 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑆𝑑 ↔ ⟨𝑛, 𝑑⟩ ∈ 𝑆)
117 vex 3499 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ V
118 vex 3499 . . . . . . . . . . . . . . . . . . . 20 𝑑 ∈ V
119 simpl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢 = 𝑛𝑣 = 𝑑) → 𝑢 = 𝑛)
120119eleq1d 2899 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 = 𝑛𝑣 = 𝑑) → (𝑢𝑐𝑛𝑐))
121 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢 = 𝑛𝑣 = 𝑑) → 𝑣 = 𝑑)
122121eleq1d 2899 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 = 𝑛𝑣 = 𝑑) → (𝑣𝑐𝑑𝑐))
123 sseq1 3994 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑛 → (𝑢𝑤𝑛𝑤))
124 sseq2 3995 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝑑 → (𝑤𝑣𝑤𝑑))
125123, 124bi2anan9 637 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢 = 𝑛𝑣 = 𝑑) → ((𝑢𝑤𝑤𝑣) ↔ (𝑛𝑤𝑤𝑑)))
126125rexbidv 3299 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 = 𝑛𝑣 = 𝑑) → (∃𝑤𝐵 (𝑢𝑤𝑤𝑣) ↔ ∃𝑤𝐵 (𝑛𝑤𝑤𝑑)))
127120, 122, 1263anbi123d 1432 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 = 𝑛𝑣 = 𝑑) → ((𝑢𝑐𝑣𝑐 ∧ ∃𝑤𝐵 (𝑢𝑤𝑤𝑣)) ↔ (𝑛𝑐𝑑𝑐 ∧ ∃𝑤𝐵 (𝑛𝑤𝑤𝑑))))
128117, 118, 127, 8braba 5426 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑆𝑑 ↔ (𝑛𝑐𝑑𝑐 ∧ ∃𝑤𝐵 (𝑛𝑤𝑤𝑑)))
129116, 128bitr3i 279 . . . . . . . . . . . . . . . . . 18 (⟨𝑛, 𝑑⟩ ∈ 𝑆 ↔ (𝑛𝑐𝑑𝑐 ∧ ∃𝑤𝐵 (𝑛𝑤𝑤𝑑)))
130105, 106, 115, 129syl3anbrc 1339 . . . . . . . . . . . . . . . . 17 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ⟨𝑛, 𝑑⟩ ∈ 𝑆)
131 fnfvelrn 6850 . . . . . . . . . . . . . . . . 17 ((𝑓 Fn 𝑆 ∧ ⟨𝑛, 𝑑⟩ ∈ 𝑆) → (𝑓‘⟨𝑛, 𝑑⟩) ∈ ran 𝑓)
132104, 130, 131syl2anc 586 . . . . . . . . . . . . . . . 16 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (𝑓‘⟨𝑛, 𝑑⟩) ∈ ran 𝑓)
133 simprl 769 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑛𝑐)
134 simplll 773 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑑𝑐)
135 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑚𝐵)
136 simprrr 780 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑛𝑚)
137109ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → 𝑚𝑑)
138135, 136, 137, 114syl12anc 834 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ∃𝑤𝐵 (𝑛𝑤𝑤𝑑))
139133, 134, 138, 129syl3anbrc 1339 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ⟨𝑛, 𝑑⟩ ∈ 𝑆)
140 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ⟨𝑛, 𝑑⟩ → (1st𝑥) = (1st ‘⟨𝑛, 𝑑⟩))
141 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ⟨𝑛, 𝑑⟩ → (𝑓𝑥) = (𝑓‘⟨𝑛, 𝑑⟩))
142140, 141sseq12d 4002 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ⟨𝑛, 𝑑⟩ → ((1st𝑥) ⊆ (𝑓𝑥) ↔ (1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩)))
143 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = ⟨𝑛, 𝑑⟩ → (2nd𝑥) = (2nd ‘⟨𝑛, 𝑑⟩))
144141, 143sseq12d 4002 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ⟨𝑛, 𝑑⟩ → ((𝑓𝑥) ⊆ (2nd𝑥) ↔ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩)))
145142, 144anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ⟨𝑛, 𝑑⟩ → (((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) ↔ ((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩))))
146145rspcv 3620 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑛, 𝑑⟩ ∈ 𝑆 → (∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) → ((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩))))
147139, 146syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) → ((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩))))
148117, 118op1st 7699 . . . . . . . . . . . . . . . . . . . . . . . 24 (1st ‘⟨𝑛, 𝑑⟩) = 𝑛
149148sseq1i 3997 . . . . . . . . . . . . . . . . . . . . . . 23 ((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ↔ 𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩))
150117, 118op2nd 7700 . . . . . . . . . . . . . . . . . . . . . . . 24 (2nd ‘⟨𝑛, 𝑑⟩) = 𝑑
151150sseq2i 3998 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩) ↔ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)
152149, 151anbi12i 628 . . . . . . . . . . . . . . . . . . . . . 22 (((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩)) ↔ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑))
153 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → 𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩))
154 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚)) → 𝑡𝑛)
155154ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → 𝑡𝑛)
156153, 155sseldd 3970 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → 𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩))
157 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)
158 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → 𝑑𝑜)
159158ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → 𝑑𝑜)
160157, 159sstrd 3979 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)
161156, 160jca 514 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) ∧ (𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜))
162161ex 415 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ((𝑛 ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑑) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))
163152, 162syl5bi 244 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (((1st ‘⟨𝑛, 𝑑⟩) ⊆ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ (2nd ‘⟨𝑛, 𝑑⟩)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))
164147, 163syldc 48 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) → ((((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))
165164exp4c 435 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)) → ((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) → ((𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑)) → ((𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))))
166165ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜)) → ((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) → ((𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑)) → ((𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))))
167166adantl 484 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → ((𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜)) → ((𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑)) → ((𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚)) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))))
168167imp41 428 . . . . . . . . . . . . . . . 16 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜))
169 eleq2 2903 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑓‘⟨𝑛, 𝑑⟩) → (𝑡𝑏𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩)))
170 sseq1 3994 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑓‘⟨𝑛, 𝑑⟩) → (𝑏𝑜 ↔ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜))
171169, 170anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑓‘⟨𝑛, 𝑑⟩) → ((𝑡𝑏𝑏𝑜) ↔ (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)))
172171rspcev 3625 . . . . . . . . . . . . . . . 16 (((𝑓‘⟨𝑛, 𝑑⟩) ∈ ran 𝑓 ∧ (𝑡 ∈ (𝑓‘⟨𝑛, 𝑑⟩) ∧ (𝑓‘⟨𝑛, 𝑑⟩) ⊆ 𝑜)) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
173132, 168, 172syl2anc 586 . . . . . . . . . . . . . . 15 (((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) ∧ (𝑛𝑐 ∧ (𝑡𝑛𝑛𝑚))) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
174100, 173rexlimddv 3293 . . . . . . . . . . . . . 14 ((((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) ∧ (𝑚𝐵 ∧ (𝑡𝑚𝑚𝑑))) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
17590, 174rexlimddv 3293 . . . . . . . . . . . . 13 (((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) ∧ (𝑑𝑐 ∧ (𝑡𝑑𝑑𝑜))) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
17676, 175rexlimddv 3293 . . . . . . . . . . . 12 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) ∧ (𝑜𝐽𝑡𝑜))) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
177176expr 459 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ((𝑜𝐽𝑡𝑜) → ∃𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜)))
178177ralrimivv 3192 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ∀𝑜𝐽𝑡𝑜𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜))
179 basgen2 21599 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ ran 𝑓𝐽 ∧ ∀𝑜𝐽𝑡𝑜𝑏 ∈ ran 𝑓(𝑡𝑏𝑏𝑜)) → (topGen‘ran 𝑓) = 𝐽)
18062, 69, 178, 179syl3anc 1367 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → (topGen‘ran 𝑓) = 𝐽)
181180, 62eqeltrd 2915 . . . . . . . 8 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → (topGen‘ran 𝑓) ∈ Top)
182 tgclb 21580 . . . . . . . 8 (ran 𝑓 ∈ TopBases ↔ (topGen‘ran 𝑓) ∈ Top)
183181, 182sylibr 236 . . . . . . 7 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓 ∈ TopBases)
184 omelon 9111 . . . . . . . . . 10 ω ∈ On
18524adantr 483 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝑆 ≼ ω)
186 ondomen 9465 . . . . . . . . . 10 ((ω ∈ On ∧ 𝑆 ≼ ω) → 𝑆 ∈ dom card)
187184, 185, 186sylancr 589 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝑆 ∈ dom card)
188101ad2antrl 726 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝑓 Fn 𝑆)
189 dffn4 6598 . . . . . . . . . 10 (𝑓 Fn 𝑆𝑓:𝑆onto→ran 𝑓)
190188, 189sylib 220 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝑓:𝑆onto→ran 𝑓)
191 fodomnum 9485 . . . . . . . . 9 (𝑆 ∈ dom card → (𝑓:𝑆onto→ran 𝑓 → ran 𝑓𝑆))
192187, 190, 191sylc 65 . . . . . . . 8 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓𝑆)
193 domtr 8564 . . . . . . . 8 ((ran 𝑓𝑆𝑆 ≼ ω) → ran 𝑓 ≼ ω)
194192, 185, 193syl2anc 586 . . . . . . 7 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ran 𝑓 ≼ ω)
195180eqcomd 2829 . . . . . . 7 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → 𝐽 = (topGen‘ran 𝑓))
196 breq1 5071 . . . . . . . . 9 (𝑏 = ran 𝑓 → (𝑏 ≼ ω ↔ ran 𝑓 ≼ ω))
197 sseq1 3994 . . . . . . . . 9 (𝑏 = ran 𝑓 → (𝑏𝐵 ↔ ran 𝑓𝐵))
198 fveq2 6672 . . . . . . . . . 10 (𝑏 = ran 𝑓 → (topGen‘𝑏) = (topGen‘ran 𝑓))
199198eqeq2d 2834 . . . . . . . . 9 (𝑏 = ran 𝑓 → (𝐽 = (topGen‘𝑏) ↔ 𝐽 = (topGen‘ran 𝑓)))
200196, 197, 1993anbi123d 1432 . . . . . . . 8 (𝑏 = ran 𝑓 → ((𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)) ↔ (ran 𝑓 ≼ ω ∧ ran 𝑓𝐵𝐽 = (topGen‘ran 𝑓))))
201200rspcev 3625 . . . . . . 7 ((ran 𝑓 ∈ TopBases ∧ (ran 𝑓 ≼ ω ∧ ran 𝑓𝐵𝐽 = (topGen‘ran 𝑓))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
202183, 194, 64, 195, 201syl13anc 1368 . . . . . 6 ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ (𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥)))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
203202ex 415 . . . . 5 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ((𝑓:𝑆𝐵 ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏))))
20459, 203sylbid 242 . . . 4 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ((𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏))))
205204exlimdv 1934 . . 3 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → (∃𝑓(𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥𝑆 ((1st𝑥) ⊆ (𝑓𝑥) ∧ (𝑓𝑥) ⊆ (2nd𝑥))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏))))
20656, 205mpd 15 . 2 (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
2073, 206rexlimddv 3293 1 ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = (topGen‘𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  wss 3938  cop 4575   class class class wbr 5068  {copab 5130   I cid 5461   × cxp 5555  dom cdm 5557  ran crn 5558  Rel wrel 5562  Oncon0 6193   Fn wfn 6352  wf 6353  ontowfo 6355  cfv 6357  ωcom 7582  1st c1st 7689  2nd c2nd 7690  cen 8508  cdom 8509  cardccrd 9366  topGenctg 16713  Topctop 21503  TopBasesctb 21555  2ndωc2ndc 22048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-oi 8976  df-card 9370  df-acn 9373  df-topgen 16719  df-top 21504  df-bases 21556  df-2ndc 22050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator