Step | Hyp | Ref
| Expression |
1 | | simpll 763 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈
1stω) |
2 | | 1stctop 22502 |
. . . . . . 7
⊢ (𝐽 ∈ 1stω
→ 𝐽 ∈
Top) |
3 | | 1stcelcls.1 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
4 | 3 | clsss3 22118 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
5 | 2, 4 | sylan 579 |
. . . . . 6
⊢ ((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
6 | 5 | sselda 3917 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ 𝑋) |
7 | 3 | 1stcfb 22504 |
. . . . 5
⊢ ((𝐽 ∈ 1stω
∧ 𝑃 ∈ 𝑋) → ∃𝑔(𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) |
8 | 1, 6, 7 | syl2anc 583 |
. . . 4
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∃𝑔(𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) |
9 | | simpr2 1193 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘))) |
10 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) → 𝑃 ∈ (𝑔‘𝑘)) |
11 | 10 | ralimi 3086 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) → ∀𝑘 ∈ ℕ 𝑃 ∈ (𝑔‘𝑘)) |
12 | 9, 11 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ∀𝑘 ∈ ℕ 𝑃 ∈ (𝑔‘𝑘)) |
13 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑛 → (𝑔‘𝑘) = (𝑔‘𝑛)) |
14 | 13 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → (𝑃 ∈ (𝑔‘𝑘) ↔ 𝑃 ∈ (𝑔‘𝑛))) |
15 | 14 | rspccva 3551 |
. . . . . . . . . . 11
⊢
((∀𝑘 ∈
ℕ 𝑃 ∈ (𝑔‘𝑘) ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ (𝑔‘𝑛)) |
16 | 12, 15 | sylan 579 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ (𝑔‘𝑛)) |
17 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑔‘𝑛) → (𝑃 ∈ 𝑦 ↔ 𝑃 ∈ (𝑔‘𝑛))) |
18 | | ineq1 4136 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑔‘𝑛) → (𝑦 ∩ 𝑆) = ((𝑔‘𝑛) ∩ 𝑆)) |
19 | 18 | neeq1d 3002 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑔‘𝑛) → ((𝑦 ∩ 𝑆) ≠ ∅ ↔ ((𝑔‘𝑛) ∩ 𝑆) ≠ ∅)) |
20 | 17, 19 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑔‘𝑛) → ((𝑃 ∈ 𝑦 → (𝑦 ∩ 𝑆) ≠ ∅) ↔ (𝑃 ∈ (𝑔‘𝑛) → ((𝑔‘𝑛) ∩ 𝑆) ≠ ∅))) |
21 | 3 | elcls2 22133 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 → (𝑦 ∩ 𝑆) ≠ ∅)))) |
22 | 2, 21 | sylan 579 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 → (𝑦 ∩ 𝑆) ≠ ∅)))) |
23 | 22 | simplbda 499 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 → (𝑦 ∩ 𝑆) ≠ ∅)) |
24 | 23 | ad2antrr 722 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ∀𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 → (𝑦 ∩ 𝑆) ≠ ∅)) |
25 | | simpr1 1192 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → 𝑔:ℕ⟶𝐽) |
26 | 25 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → (𝑔‘𝑛) ∈ 𝐽) |
27 | 20, 24, 26 | rspcdva 3554 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → (𝑃 ∈ (𝑔‘𝑛) → ((𝑔‘𝑛) ∩ 𝑆) ≠ ∅)) |
28 | 16, 27 | mpd 15 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ((𝑔‘𝑛) ∩ 𝑆) ≠ ∅) |
29 | | elin 3899 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((𝑔‘𝑛) ∩ 𝑆) ↔ (𝑥 ∈ (𝑔‘𝑛) ∧ 𝑥 ∈ 𝑆)) |
30 | 29 | biancomi 462 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝑔‘𝑛) ∩ 𝑆) ↔ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑔‘𝑛))) |
31 | 30 | exbii 1851 |
. . . . . . . . . 10
⊢
(∃𝑥 𝑥 ∈ ((𝑔‘𝑛) ∩ 𝑆) ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑔‘𝑛))) |
32 | | n0 4277 |
. . . . . . . . . 10
⊢ (((𝑔‘𝑛) ∩ 𝑆) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑔‘𝑛) ∩ 𝑆)) |
33 | | df-rex 3069 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝑆 𝑥 ∈ (𝑔‘𝑛) ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑔‘𝑛))) |
34 | 31, 32, 33 | 3bitr4i 302 |
. . . . . . . . 9
⊢ (((𝑔‘𝑛) ∩ 𝑆) ≠ ∅ ↔ ∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑔‘𝑛)) |
35 | 28, 34 | sylib 217 |
. . . . . . . 8
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑔‘𝑛)) |
36 | 2 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top) |
37 | 3 | topopn 21963 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
38 | 36, 37 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑋 ∈ 𝐽) |
39 | | simplr 765 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
40 | 38, 39 | ssexd 5243 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ V) |
41 | | fvi 6826 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ V → ( I
‘𝑆) = 𝑆) |
42 | 40, 41 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ( I ‘𝑆) = 𝑆) |
43 | 42 | ad2antrr 722 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ( I ‘𝑆) = 𝑆) |
44 | 43 | rexeqdv 3340 |
. . . . . . . 8
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → (∃𝑥 ∈ ( I ‘𝑆)𝑥 ∈ (𝑔‘𝑛) ↔ ∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑔‘𝑛))) |
45 | 35, 44 | mpbird 256 |
. . . . . . 7
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ ( I ‘𝑆)𝑥 ∈ (𝑔‘𝑛)) |
46 | 45 | ralrimiva 3107 |
. . . . . 6
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ∀𝑛 ∈ ℕ ∃𝑥 ∈ ( I ‘𝑆)𝑥 ∈ (𝑔‘𝑛)) |
47 | | fvex 6769 |
. . . . . . 7
⊢ ( I
‘𝑆) ∈
V |
48 | | nnenom 13628 |
. . . . . . 7
⊢ ℕ
≈ ω |
49 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑥 = (𝑓‘𝑛) → (𝑥 ∈ (𝑔‘𝑛) ↔ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) |
50 | 47, 48, 49 | axcc4 10126 |
. . . . . 6
⊢
(∀𝑛 ∈
ℕ ∃𝑥 ∈ ( I
‘𝑆)𝑥 ∈ (𝑔‘𝑛) → ∃𝑓(𝑓:ℕ⟶( I ‘𝑆) ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) |
51 | 46, 50 | syl 17 |
. . . . 5
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ∃𝑓(𝑓:ℕ⟶( I ‘𝑆) ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) |
52 | 42 | feq3d 6571 |
. . . . . . . . 9
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → (𝑓:ℕ⟶( I ‘𝑆) ↔ 𝑓:ℕ⟶𝑆)) |
53 | 52 | biimpd 228 |
. . . . . . . 8
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → (𝑓:ℕ⟶( I ‘𝑆) → 𝑓:ℕ⟶𝑆)) |
54 | 53 | adantr 480 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → (𝑓:ℕ⟶( I ‘𝑆) → 𝑓:ℕ⟶𝑆)) |
55 | 6 | ad2antrr 722 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 𝑃 ∈ 𝑋) |
56 | | simplr3 1215 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥)) |
57 | | eleq2 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) |
58 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑗 → (𝑔‘𝑘) = (𝑔‘𝑗)) |
59 | 58 | sseq1d 3948 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑗 → ((𝑔‘𝑘) ⊆ 𝑥 ↔ (𝑔‘𝑗) ⊆ 𝑥)) |
60 | 59 | cbvrexvw 3373 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑘 ∈
ℕ (𝑔‘𝑘) ⊆ 𝑥 ↔ ∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑥) |
61 | | sseq2 3943 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ((𝑔‘𝑗) ⊆ 𝑥 ↔ (𝑔‘𝑗) ⊆ 𝑦)) |
62 | 61 | rexbidv 3225 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑥 ↔ ∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑦)) |
63 | 60, 62 | syl5bb 282 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥 ↔ ∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑦)) |
64 | 57, 63 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥) ↔ (𝑃 ∈ 𝑦 → ∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑦))) |
65 | 64 | rspccva 3551 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥) ∧ 𝑦 ∈ 𝐽) → (𝑃 ∈ 𝑦 → ∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑦)) |
66 | 56, 65 | sylan 579 |
. . . . . . . . . . . 12
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) ∧ 𝑦 ∈ 𝐽) → (𝑃 ∈ 𝑦 → ∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑦)) |
67 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) → (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) |
68 | 67 | ralimi 3086 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑘 ∈
ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) |
69 | 9, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) |
70 | 69 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) |
71 | | simprrr 778 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) → 𝑗 ∈ ℕ) |
72 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑗 → (𝑔‘𝑛) = (𝑔‘𝑗)) |
73 | 72 | sseq1d 3948 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑗 → ((𝑔‘𝑛) ⊆ (𝑔‘𝑗) ↔ (𝑔‘𝑗) ⊆ (𝑔‘𝑗))) |
74 | 73 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑗 → (((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑛) ⊆ (𝑔‘𝑗)) ↔ ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑗) ⊆ (𝑔‘𝑗)))) |
75 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑚 → (𝑔‘𝑛) = (𝑔‘𝑚)) |
76 | 75 | sseq1d 3948 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑚 → ((𝑔‘𝑛) ⊆ (𝑔‘𝑗) ↔ (𝑔‘𝑚) ⊆ (𝑔‘𝑗))) |
77 | 76 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑚 → (((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑛) ⊆ (𝑔‘𝑗)) ↔ ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑚) ⊆ (𝑔‘𝑗)))) |
78 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = (𝑚 + 1) → (𝑔‘𝑛) = (𝑔‘(𝑚 + 1))) |
79 | 78 | sseq1d 3948 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = (𝑚 + 1) → ((𝑔‘𝑛) ⊆ (𝑔‘𝑗) ↔ (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑗))) |
80 | 79 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = (𝑚 + 1) → (((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑛) ⊆ (𝑔‘𝑗)) ↔ ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑗)))) |
81 | | ssid 3939 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔‘𝑗) ⊆ (𝑔‘𝑗) |
82 | 81 | 2a1i 12 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ ℤ →
((∀𝑘 ∈ ℕ
(𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑗) ⊆ (𝑔‘𝑗))) |
83 | | eluznn 12587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑗 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘𝑗)) → 𝑚 ∈ ℕ) |
84 | | fvoveq1 7278 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝑚 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝑚 + 1))) |
85 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝑚 → (𝑔‘𝑘) = (𝑔‘𝑚)) |
86 | 84, 85 | sseq12d 3950 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 = 𝑚 → ((𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ↔ (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑚))) |
87 | 86 | rspccva 3551 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((∀𝑘 ∈
ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑚)) |
88 | 83, 87 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((∀𝑘 ∈
ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ (𝑗 ∈ ℕ ∧ 𝑚 ∈ (ℤ≥‘𝑗))) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑚)) |
89 | 88 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((∀𝑘 ∈
ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑚)) |
90 | | sstr2 3924 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑚) → ((𝑔‘𝑚) ⊆ (𝑔‘𝑗) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑗))) |
91 | 89, 90 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((∀𝑘 ∈
ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((𝑔‘𝑚) ⊆ (𝑔‘𝑗) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑗))) |
92 | 91 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → ((𝑔‘𝑚) ⊆ (𝑔‘𝑗) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑗)))) |
93 | 92 | a2d 29 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → (((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑚) ⊆ (𝑔‘𝑗)) → ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑗)))) |
94 | 74, 77, 80, 77, 82, 93 | uzind4 12575 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑚) ⊆ (𝑔‘𝑗))) |
95 | 94 | com12 32 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑘 ∈
ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑚 ∈ (ℤ≥‘𝑗) → (𝑔‘𝑚) ⊆ (𝑔‘𝑗))) |
96 | 95 | ralrimiv 3106 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑘 ∈
ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → ∀𝑚 ∈
(ℤ≥‘𝑗)(𝑔‘𝑚) ⊆ (𝑔‘𝑗)) |
97 | 70, 71, 96 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) → ∀𝑚 ∈
(ℤ≥‘𝑗)(𝑔‘𝑚) ⊆ (𝑔‘𝑗)) |
98 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑚 → (𝑓‘𝑛) = (𝑓‘𝑚)) |
99 | 98, 75 | eleq12d 2833 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑚 → ((𝑓‘𝑛) ∈ (𝑔‘𝑛) ↔ (𝑓‘𝑚) ∈ (𝑔‘𝑚))) |
100 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ)) → ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) |
101 | 100 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) |
102 | 71, 83 | sylan 579 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 𝑚 ∈ ℕ) |
103 | 99, 101, 102 | rspcdva 3554 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝑓‘𝑚) ∈ (𝑔‘𝑚)) |
104 | 103 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) → ∀𝑚 ∈
(ℤ≥‘𝑗)(𝑓‘𝑚) ∈ (𝑔‘𝑚)) |
105 | | r19.26 3094 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)((𝑔‘𝑚) ⊆ (𝑔‘𝑗) ∧ (𝑓‘𝑚) ∈ (𝑔‘𝑚)) ↔ (∀𝑚 ∈ (ℤ≥‘𝑗)(𝑔‘𝑚) ⊆ (𝑔‘𝑗) ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ (𝑔‘𝑚))) |
106 | 97, 104, 105 | sylanbrc 582 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) → ∀𝑚 ∈
(ℤ≥‘𝑗)((𝑔‘𝑚) ⊆ (𝑔‘𝑗) ∧ (𝑓‘𝑚) ∈ (𝑔‘𝑚))) |
107 | | ssel2 3912 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔‘𝑚) ⊆ (𝑔‘𝑗) ∧ (𝑓‘𝑚) ∈ (𝑔‘𝑚)) → (𝑓‘𝑚) ∈ (𝑔‘𝑗)) |
108 | 107 | ralimi 3086 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)((𝑔‘𝑚) ⊆ (𝑔‘𝑗) ∧ (𝑓‘𝑚) ∈ (𝑔‘𝑚)) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ (𝑔‘𝑗)) |
109 | 106, 108 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) → ∀𝑚 ∈
(ℤ≥‘𝑗)(𝑓‘𝑚) ∈ (𝑔‘𝑗)) |
110 | | ssel 3910 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔‘𝑗) ⊆ 𝑦 → ((𝑓‘𝑚) ∈ (𝑔‘𝑗) → (𝑓‘𝑚) ∈ 𝑦)) |
111 | 110 | ralimdv 3103 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔‘𝑗) ⊆ 𝑦 → (∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ (𝑔‘𝑗) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)) |
112 | 109, 111 | syl5com 31 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) → ((𝑔‘𝑗) ⊆ 𝑦 → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)) |
113 | 112 | anassrs 467 |
. . . . . . . . . . . . . 14
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ)) → ((𝑔‘𝑗) ⊆ 𝑦 → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)) |
114 | 113 | anassrs 467 |
. . . . . . . . . . . . 13
⊢
(((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) ∧ 𝑦 ∈ 𝐽) ∧ 𝑗 ∈ ℕ) → ((𝑔‘𝑗) ⊆ 𝑦 → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)) |
115 | 114 | reximdva 3202 |
. . . . . . . . . . . 12
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) ∧ 𝑦 ∈ 𝐽) → (∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑦 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)) |
116 | 66, 115 | syld 47 |
. . . . . . . . . . 11
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) ∧ 𝑦 ∈ 𝐽) → (𝑃 ∈ 𝑦 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)) |
117 | 116 | ralrimiva 3107 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → ∀𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)) |
118 | 36 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 𝐽 ∈ Top) |
119 | 3 | toptopon 21974 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
120 | 118, 119 | sylib 217 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 𝐽 ∈ (TopOn‘𝑋)) |
121 | | nnuz 12550 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
122 | | 1zzd 12281 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 1 ∈ ℤ) |
123 | | simprl 767 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 𝑓:ℕ⟶𝑆) |
124 | 39 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 𝑆 ⊆ 𝑋) |
125 | 123, 124 | fssd 6602 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 𝑓:ℕ⟶𝑋) |
126 | | eqidd 2739 |
. . . . . . . . . . 11
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) ∧ 𝑚 ∈ ℕ) → (𝑓‘𝑚) = (𝑓‘𝑚)) |
127 | 120, 121,
122, 125, 126 | lmbrf 22319 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → (𝑓(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)))) |
128 | 55, 117, 127 | mpbir2and 709 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 𝑓(⇝𝑡‘𝐽)𝑃) |
129 | 128 | expr 456 |
. . . . . . . 8
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑓:ℕ⟶𝑆) → (∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛) → 𝑓(⇝𝑡‘𝐽)𝑃)) |
130 | 129 | imdistanda 571 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) → (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) |
131 | 54, 130 | syland 602 |
. . . . . 6
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ((𝑓:ℕ⟶( I ‘𝑆) ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) → (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) |
132 | 131 | eximdv 1921 |
. . . . 5
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → (∃𝑓(𝑓:ℕ⟶( I ‘𝑆) ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) → ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) |
133 | 51, 132 | mpd 15 |
. . . 4
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) |
134 | 8, 133 | exlimddv 1939 |
. . 3
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) |
135 | 134 | ex 412 |
. 2
⊢ ((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) |
136 | 2 | ad2antrr 722 |
. . . . . 6
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) → 𝐽 ∈ Top) |
137 | 136, 119 | sylib 217 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) → 𝐽 ∈ (TopOn‘𝑋)) |
138 | | 1zzd 12281 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) → 1 ∈ ℤ) |
139 | | simprr 769 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) → 𝑓(⇝𝑡‘𝐽)𝑃) |
140 | | simprl 767 |
. . . . . 6
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) → 𝑓:ℕ⟶𝑆) |
141 | 140 | ffvelrnda 6943 |
. . . . 5
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ 𝑆) |
142 | | simplr 765 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) → 𝑆 ⊆ 𝑋) |
143 | 121, 137,
138, 139, 141, 142 | lmcls 22361 |
. . . 4
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
144 | 143 | ex 412 |
. . 3
⊢ ((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) → ((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ ((cls‘𝐽)‘𝑆))) |
145 | 144 | exlimdv 1937 |
. 2
⊢ ((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) → (∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ ((cls‘𝐽)‘𝑆))) |
146 | 135, 145 | impbid 211 |
1
⊢ ((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) |