Step | Hyp | Ref
| Expression |
1 | | simpll 766 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈
1stω) |
2 | | 1stctop 23472 |
. . . . . . 7
⊢ (𝐽 ∈ 1stω
→ 𝐽 ∈
Top) |
3 | | 1stcelcls.1 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
4 | 3 | clsss3 23088 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
5 | 2, 4 | sylan 579 |
. . . . . 6
⊢ ((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
6 | 5 | sselda 4008 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ 𝑋) |
7 | 3 | 1stcfb 23474 |
. . . . 5
⊢ ((𝐽 ∈ 1stω
∧ 𝑃 ∈ 𝑋) → ∃𝑔(𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) |
8 | 1, 6, 7 | syl2anc 583 |
. . . 4
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∃𝑔(𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) |
9 | | simpr2 1195 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘))) |
10 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) → 𝑃 ∈ (𝑔‘𝑘)) |
11 | 10 | ralimi 3089 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) → ∀𝑘 ∈ ℕ 𝑃 ∈ (𝑔‘𝑘)) |
12 | 9, 11 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ∀𝑘 ∈ ℕ 𝑃 ∈ (𝑔‘𝑘)) |
13 | | fveq2 6920 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑛 → (𝑔‘𝑘) = (𝑔‘𝑛)) |
14 | 13 | eleq2d 2830 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → (𝑃 ∈ (𝑔‘𝑘) ↔ 𝑃 ∈ (𝑔‘𝑛))) |
15 | 14 | rspccva 3634 |
. . . . . . . . . . 11
⊢
((∀𝑘 ∈
ℕ 𝑃 ∈ (𝑔‘𝑘) ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ (𝑔‘𝑛)) |
16 | 12, 15 | sylan 579 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ (𝑔‘𝑛)) |
17 | | eleq2 2833 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑔‘𝑛) → (𝑃 ∈ 𝑦 ↔ 𝑃 ∈ (𝑔‘𝑛))) |
18 | | ineq1 4234 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑔‘𝑛) → (𝑦 ∩ 𝑆) = ((𝑔‘𝑛) ∩ 𝑆)) |
19 | 18 | neeq1d 3006 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑔‘𝑛) → ((𝑦 ∩ 𝑆) ≠ ∅ ↔ ((𝑔‘𝑛) ∩ 𝑆) ≠ ∅)) |
20 | 17, 19 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑔‘𝑛) → ((𝑃 ∈ 𝑦 → (𝑦 ∩ 𝑆) ≠ ∅) ↔ (𝑃 ∈ (𝑔‘𝑛) → ((𝑔‘𝑛) ∩ 𝑆) ≠ ∅))) |
21 | 3 | elcls2 23103 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 → (𝑦 ∩ 𝑆) ≠ ∅)))) |
22 | 2, 21 | sylan 579 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 → (𝑦 ∩ 𝑆) ≠ ∅)))) |
23 | 22 | simplbda 499 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 → (𝑦 ∩ 𝑆) ≠ ∅)) |
24 | 23 | ad2antrr 725 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ∀𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 → (𝑦 ∩ 𝑆) ≠ ∅)) |
25 | | simpr1 1194 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → 𝑔:ℕ⟶𝐽) |
26 | 25 | ffvelcdmda 7118 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → (𝑔‘𝑛) ∈ 𝐽) |
27 | 20, 24, 26 | rspcdva 3636 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → (𝑃 ∈ (𝑔‘𝑛) → ((𝑔‘𝑛) ∩ 𝑆) ≠ ∅)) |
28 | 16, 27 | mpd 15 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ((𝑔‘𝑛) ∩ 𝑆) ≠ ∅) |
29 | | elin 3992 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((𝑔‘𝑛) ∩ 𝑆) ↔ (𝑥 ∈ (𝑔‘𝑛) ∧ 𝑥 ∈ 𝑆)) |
30 | 29 | biancomi 462 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝑔‘𝑛) ∩ 𝑆) ↔ (𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑔‘𝑛))) |
31 | 30 | exbii 1846 |
. . . . . . . . . 10
⊢
(∃𝑥 𝑥 ∈ ((𝑔‘𝑛) ∩ 𝑆) ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑔‘𝑛))) |
32 | | n0 4376 |
. . . . . . . . . 10
⊢ (((𝑔‘𝑛) ∩ 𝑆) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑔‘𝑛) ∩ 𝑆)) |
33 | | df-rex 3077 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝑆 𝑥 ∈ (𝑔‘𝑛) ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑥 ∈ (𝑔‘𝑛))) |
34 | 31, 32, 33 | 3bitr4i 303 |
. . . . . . . . 9
⊢ (((𝑔‘𝑛) ∩ 𝑆) ≠ ∅ ↔ ∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑔‘𝑛)) |
35 | 28, 34 | sylib 218 |
. . . . . . . 8
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ 𝑆 𝑥 ∈ (𝑔‘𝑛)) |
36 | 2 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top) |
37 | 3 | topopn 22933 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
38 | 36, 37 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑋 ∈ 𝐽) |
39 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
40 | 38, 39 | ssexd 5342 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ V) |
41 | | fvi 6998 |
. . . . . . . . . 10
⊢ (𝑆 ∈ V → ( I
‘𝑆) = 𝑆) |
42 | 40, 41 | syl 17 |
. . . . . . . . 9
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ( I ‘𝑆) = 𝑆) |
43 | 42 | ad2antrr 725 |
. . . . . . . 8
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ( I ‘𝑆) = 𝑆) |
44 | 35, 43 | rexeqtrrdv 3339 |
. . . . . . 7
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ ( I ‘𝑆)𝑥 ∈ (𝑔‘𝑛)) |
45 | 44 | ralrimiva 3152 |
. . . . . 6
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ∀𝑛 ∈ ℕ ∃𝑥 ∈ ( I ‘𝑆)𝑥 ∈ (𝑔‘𝑛)) |
46 | | fvex 6933 |
. . . . . . 7
⊢ ( I
‘𝑆) ∈
V |
47 | | nnenom 14031 |
. . . . . . 7
⊢ ℕ
≈ ω |
48 | | eleq1 2832 |
. . . . . . 7
⊢ (𝑥 = (𝑓‘𝑛) → (𝑥 ∈ (𝑔‘𝑛) ↔ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) |
49 | 46, 47, 48 | axcc4 10508 |
. . . . . 6
⊢
(∀𝑛 ∈
ℕ ∃𝑥 ∈ ( I
‘𝑆)𝑥 ∈ (𝑔‘𝑛) → ∃𝑓(𝑓:ℕ⟶( I ‘𝑆) ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) |
50 | 45, 49 | syl 17 |
. . . . 5
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ∃𝑓(𝑓:ℕ⟶( I ‘𝑆) ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) |
51 | 42 | feq3d 6734 |
. . . . . . . . 9
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → (𝑓:ℕ⟶( I ‘𝑆) ↔ 𝑓:ℕ⟶𝑆)) |
52 | 51 | biimpd 229 |
. . . . . . . 8
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → (𝑓:ℕ⟶( I ‘𝑆) → 𝑓:ℕ⟶𝑆)) |
53 | 52 | adantr 480 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → (𝑓:ℕ⟶( I ‘𝑆) → 𝑓:ℕ⟶𝑆)) |
54 | 6 | ad2antrr 725 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 𝑃 ∈ 𝑋) |
55 | | simplr3 1217 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥)) |
56 | | eleq2 2833 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) |
57 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑗 → (𝑔‘𝑘) = (𝑔‘𝑗)) |
58 | 57 | sseq1d 4040 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑗 → ((𝑔‘𝑘) ⊆ 𝑥 ↔ (𝑔‘𝑗) ⊆ 𝑥)) |
59 | 58 | cbvrexvw 3244 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑘 ∈
ℕ (𝑔‘𝑘) ⊆ 𝑥 ↔ ∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑥) |
60 | | sseq2 4035 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ((𝑔‘𝑗) ⊆ 𝑥 ↔ (𝑔‘𝑗) ⊆ 𝑦)) |
61 | 60 | rexbidv 3185 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑥 ↔ ∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑦)) |
62 | 59, 61 | bitrid 283 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥 ↔ ∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑦)) |
63 | 56, 62 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥) ↔ (𝑃 ∈ 𝑦 → ∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑦))) |
64 | 63 | rspccva 3634 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥) ∧ 𝑦 ∈ 𝐽) → (𝑃 ∈ 𝑦 → ∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑦)) |
65 | 55, 64 | sylan 579 |
. . . . . . . . . . . 12
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) ∧ 𝑦 ∈ 𝐽) → (𝑃 ∈ 𝑦 → ∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑦)) |
66 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) → (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) |
67 | 66 | ralimi 3089 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑘 ∈
ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) |
68 | 9, 67 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) |
69 | 68 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) |
70 | | simprrr 781 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) → 𝑗 ∈ ℕ) |
71 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑗 → (𝑔‘𝑛) = (𝑔‘𝑗)) |
72 | 71 | sseq1d 4040 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑗 → ((𝑔‘𝑛) ⊆ (𝑔‘𝑗) ↔ (𝑔‘𝑗) ⊆ (𝑔‘𝑗))) |
73 | 72 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑗 → (((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑛) ⊆ (𝑔‘𝑗)) ↔ ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑗) ⊆ (𝑔‘𝑗)))) |
74 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑚 → (𝑔‘𝑛) = (𝑔‘𝑚)) |
75 | 74 | sseq1d 4040 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑚 → ((𝑔‘𝑛) ⊆ (𝑔‘𝑗) ↔ (𝑔‘𝑚) ⊆ (𝑔‘𝑗))) |
76 | 75 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑚 → (((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑛) ⊆ (𝑔‘𝑗)) ↔ ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑚) ⊆ (𝑔‘𝑗)))) |
77 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = (𝑚 + 1) → (𝑔‘𝑛) = (𝑔‘(𝑚 + 1))) |
78 | 77 | sseq1d 4040 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = (𝑚 + 1) → ((𝑔‘𝑛) ⊆ (𝑔‘𝑗) ↔ (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑗))) |
79 | 78 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = (𝑚 + 1) → (((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑛) ⊆ (𝑔‘𝑗)) ↔ ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑗)))) |
80 | | ssid 4031 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔‘𝑗) ⊆ (𝑔‘𝑗) |
81 | 80 | 2a1i 12 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ ℤ →
((∀𝑘 ∈ ℕ
(𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑗) ⊆ (𝑔‘𝑗))) |
82 | | eluznn 12983 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑗 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘𝑗)) → 𝑚 ∈ ℕ) |
83 | | fvoveq1 7471 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝑚 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝑚 + 1))) |
84 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝑚 → (𝑔‘𝑘) = (𝑔‘𝑚)) |
85 | 83, 84 | sseq12d 4042 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 = 𝑚 → ((𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ↔ (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑚))) |
86 | 85 | rspccva 3634 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((∀𝑘 ∈
ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑚)) |
87 | 82, 86 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((∀𝑘 ∈
ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ (𝑗 ∈ ℕ ∧ 𝑚 ∈ (ℤ≥‘𝑗))) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑚)) |
88 | 87 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((∀𝑘 ∈
ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑚)) |
89 | | sstr2 4015 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑚) → ((𝑔‘𝑚) ⊆ (𝑔‘𝑗) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑗))) |
90 | 88, 89 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((∀𝑘 ∈
ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((𝑔‘𝑚) ⊆ (𝑔‘𝑗) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑗))) |
91 | 90 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → ((𝑔‘𝑚) ⊆ (𝑔‘𝑗) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑗)))) |
92 | 91 | a2d 29 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → (((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑚) ⊆ (𝑔‘𝑗)) → ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔‘𝑗)))) |
93 | 73, 76, 79, 76, 81, 92 | uzind4 12971 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘𝑚) ⊆ (𝑔‘𝑗))) |
94 | 93 | com12 32 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑘 ∈
ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → (𝑚 ∈ (ℤ≥‘𝑗) → (𝑔‘𝑚) ⊆ (𝑔‘𝑗))) |
95 | 94 | ralrimiv 3151 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑘 ∈
ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘) ∧ 𝑗 ∈ ℕ) → ∀𝑚 ∈
(ℤ≥‘𝑗)(𝑔‘𝑚) ⊆ (𝑔‘𝑗)) |
96 | 69, 70, 95 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) → ∀𝑚 ∈
(ℤ≥‘𝑗)(𝑔‘𝑚) ⊆ (𝑔‘𝑗)) |
97 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑚 → (𝑓‘𝑛) = (𝑓‘𝑚)) |
98 | 97, 74 | eleq12d 2838 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑚 → ((𝑓‘𝑛) ∈ (𝑔‘𝑛) ↔ (𝑓‘𝑚) ∈ (𝑔‘𝑚))) |
99 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ)) → ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) |
100 | 99 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) |
101 | 70, 82 | sylan 579 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 𝑚 ∈ ℕ) |
102 | 98, 100, 101 | rspcdva 3636 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝑓‘𝑚) ∈ (𝑔‘𝑚)) |
103 | 102 | ralrimiva 3152 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) → ∀𝑚 ∈
(ℤ≥‘𝑗)(𝑓‘𝑚) ∈ (𝑔‘𝑚)) |
104 | | r19.26 3117 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)((𝑔‘𝑚) ⊆ (𝑔‘𝑗) ∧ (𝑓‘𝑚) ∈ (𝑔‘𝑚)) ↔ (∀𝑚 ∈ (ℤ≥‘𝑗)(𝑔‘𝑚) ⊆ (𝑔‘𝑗) ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ (𝑔‘𝑚))) |
105 | 96, 103, 104 | sylanbrc 582 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) → ∀𝑚 ∈
(ℤ≥‘𝑗)((𝑔‘𝑚) ⊆ (𝑔‘𝑗) ∧ (𝑓‘𝑚) ∈ (𝑔‘𝑚))) |
106 | | ssel2 4003 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔‘𝑚) ⊆ (𝑔‘𝑗) ∧ (𝑓‘𝑚) ∈ (𝑔‘𝑚)) → (𝑓‘𝑚) ∈ (𝑔‘𝑗)) |
107 | 106 | ralimi 3089 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)((𝑔‘𝑚) ⊆ (𝑔‘𝑗) ∧ (𝑓‘𝑚) ∈ (𝑔‘𝑚)) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ (𝑔‘𝑗)) |
108 | 105, 107 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) → ∀𝑚 ∈
(ℤ≥‘𝑗)(𝑓‘𝑚) ∈ (𝑔‘𝑗)) |
109 | | ssel 4002 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔‘𝑗) ⊆ 𝑦 → ((𝑓‘𝑚) ∈ (𝑔‘𝑗) → (𝑓‘𝑚) ∈ 𝑦)) |
110 | 109 | ralimdv 3175 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔‘𝑗) ⊆ 𝑦 → (∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ (𝑔‘𝑗) → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)) |
111 | 108, 110 | syl5com 31 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ))) → ((𝑔‘𝑗) ⊆ 𝑦 → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)) |
112 | 111 | anassrs 467 |
. . . . . . . . . . . . . 14
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) ∧ (𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ)) → ((𝑔‘𝑗) ⊆ 𝑦 → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)) |
113 | 112 | anassrs 467 |
. . . . . . . . . . . . 13
⊢
(((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) ∧ 𝑦 ∈ 𝐽) ∧ 𝑗 ∈ ℕ) → ((𝑔‘𝑗) ⊆ 𝑦 → ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)) |
114 | 113 | reximdva 3174 |
. . . . . . . . . . . 12
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) ∧ 𝑦 ∈ 𝐽) → (∃𝑗 ∈ ℕ (𝑔‘𝑗) ⊆ 𝑦 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)) |
115 | 65, 114 | syld 47 |
. . . . . . . . . . 11
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) ∧ 𝑦 ∈ 𝐽) → (𝑃 ∈ 𝑦 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)) |
116 | 115 | ralrimiva 3152 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → ∀𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)) |
117 | 36 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 𝐽 ∈ Top) |
118 | 3 | toptopon 22944 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
119 | 117, 118 | sylib 218 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 𝐽 ∈ (TopOn‘𝑋)) |
120 | | nnuz 12946 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
121 | | 1zzd 12674 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 1 ∈ ℤ) |
122 | | simprl 770 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 𝑓:ℕ⟶𝑆) |
123 | 39 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 𝑆 ⊆ 𝑋) |
124 | 122, 123 | fssd 6764 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 𝑓:ℕ⟶𝑋) |
125 | | eqidd 2741 |
. . . . . . . . . . 11
⊢
((((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) ∧ 𝑚 ∈ ℕ) → (𝑓‘𝑚) = (𝑓‘𝑚)) |
126 | 119, 120,
121, 124, 125 | lmbrf 23289 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → (𝑓(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑗)(𝑓‘𝑚) ∈ 𝑦)))) |
127 | 54, 116, 126 | mpbir2and 712 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛))) → 𝑓(⇝𝑡‘𝐽)𝑃) |
128 | 127 | expr 456 |
. . . . . . . 8
⊢
(((((𝐽 ∈
1stω ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) ∧ 𝑓:ℕ⟶𝑆) → (∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛) → 𝑓(⇝𝑡‘𝐽)𝑃)) |
129 | 128 | imdistanda 571 |
. . . . . . 7
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) → (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) |
130 | 53, 129 | syland 602 |
. . . . . 6
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ((𝑓:ℕ⟶( I ‘𝑆) ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) → (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) |
131 | 130 | eximdv 1916 |
. . . . 5
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → (∃𝑓(𝑓:ℕ⟶( I ‘𝑆) ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ∈ (𝑔‘𝑛)) → ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) |
132 | 50, 131 | mpd 15 |
. . . 4
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔‘𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔‘𝑘)) ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑥))) → ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) |
133 | 8, 132 | exlimddv 1934 |
. . 3
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) |
134 | 133 | ex 412 |
. 2
⊢ ((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) |
135 | 2 | ad2antrr 725 |
. . . . . 6
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) → 𝐽 ∈ Top) |
136 | 135, 118 | sylib 218 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) → 𝐽 ∈ (TopOn‘𝑋)) |
137 | | 1zzd 12674 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) → 1 ∈ ℤ) |
138 | | simprr 772 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) → 𝑓(⇝𝑡‘𝐽)𝑃) |
139 | | simprl 770 |
. . . . . 6
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) → 𝑓:ℕ⟶𝑆) |
140 | 139 | ffvelcdmda 7118 |
. . . . 5
⊢ ((((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ 𝑆) |
141 | | simplr 768 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) → 𝑆 ⊆ 𝑋) |
142 | 120, 136,
137, 138, 140, 141 | lmcls 23331 |
. . . 4
⊢ (((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) ∧ (𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃)) → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
143 | 142 | ex 412 |
. . 3
⊢ ((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) → ((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ ((cls‘𝐽)‘𝑆))) |
144 | 143 | exlimdv 1932 |
. 2
⊢ ((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) → (∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ ((cls‘𝐽)‘𝑆))) |
145 | 134, 144 | impbid 212 |
1
⊢ ((𝐽 ∈ 1stω
∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) |