MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcelcls Structured version   Visualization version   GIF version

Theorem 1stcelcls 22071
Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 9859. A space satisfying the conclusion of this theorem is called a sequential space, so the theorem can also be stated as "every first-countable space is a sequential space". (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
1stcelcls.1 𝑋 = 𝐽
Assertion
Ref Expression
1stcelcls ((𝐽 ∈ 1stω ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)))
Distinct variable groups:   𝑓,𝐽   𝑃,𝑓   𝑆,𝑓   𝑓,𝑋

Proof of Theorem 1stcelcls
Dummy variables 𝑔 𝑗 𝑘 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . 5 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ 1stω)
2 1stctop 22053 . . . . . . 7 (𝐽 ∈ 1stω → 𝐽 ∈ Top)
3 1stcelcls.1 . . . . . . . 8 𝑋 = 𝐽
43clsss3 21669 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
52, 4sylan 582 . . . . . 6 ((𝐽 ∈ 1stω ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
65sselda 3969 . . . . 5 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃𝑋)
731stcfb 22055 . . . . 5 ((𝐽 ∈ 1stω ∧ 𝑃𝑋) → ∃𝑔(𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥)))
81, 6, 7syl2anc 586 . . . 4 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∃𝑔(𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥)))
9 simpr2 1191 . . . . . . . . . . . 12 ((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) → ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)))
10 simpl 485 . . . . . . . . . . . . 13 ((𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) → 𝑃 ∈ (𝑔𝑘))
1110ralimi 3162 . . . . . . . . . . . 12 (∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) → ∀𝑘 ∈ ℕ 𝑃 ∈ (𝑔𝑘))
129, 11syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) → ∀𝑘 ∈ ℕ 𝑃 ∈ (𝑔𝑘))
13 fveq2 6672 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑔𝑘) = (𝑔𝑛))
1413eleq2d 2900 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑃 ∈ (𝑔𝑘) ↔ 𝑃 ∈ (𝑔𝑛)))
1514rspccva 3624 . . . . . . . . . . 11 ((∀𝑘 ∈ ℕ 𝑃 ∈ (𝑔𝑘) ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ (𝑔𝑛))
1612, 15sylan 582 . . . . . . . . . 10 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → 𝑃 ∈ (𝑔𝑛))
17 eleq2 2903 . . . . . . . . . . . 12 (𝑦 = (𝑔𝑛) → (𝑃𝑦𝑃 ∈ (𝑔𝑛)))
18 ineq1 4183 . . . . . . . . . . . . 13 (𝑦 = (𝑔𝑛) → (𝑦𝑆) = ((𝑔𝑛) ∩ 𝑆))
1918neeq1d 3077 . . . . . . . . . . . 12 (𝑦 = (𝑔𝑛) → ((𝑦𝑆) ≠ ∅ ↔ ((𝑔𝑛) ∩ 𝑆) ≠ ∅))
2017, 19imbi12d 347 . . . . . . . . . . 11 (𝑦 = (𝑔𝑛) → ((𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ (𝑃 ∈ (𝑔𝑛) → ((𝑔𝑛) ∩ 𝑆) ≠ ∅)))
213elcls2 21684 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃𝑋 ∧ ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅))))
222, 21sylan 582 . . . . . . . . . . . . 13 ((𝐽 ∈ 1stω ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃𝑋 ∧ ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅))))
2322simplbda 502 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅))
2423ad2antrr 724 . . . . . . . . . . 11 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅))
25 simpr1 1190 . . . . . . . . . . . 12 ((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) → 𝑔:ℕ⟶𝐽)
2625ffvelrnda 6853 . . . . . . . . . . 11 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → (𝑔𝑛) ∈ 𝐽)
2720, 24, 26rspcdva 3627 . . . . . . . . . 10 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → (𝑃 ∈ (𝑔𝑛) → ((𝑔𝑛) ∩ 𝑆) ≠ ∅))
2816, 27mpd 15 . . . . . . . . 9 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ((𝑔𝑛) ∩ 𝑆) ≠ ∅)
29 elin 4171 . . . . . . . . . . . 12 (𝑥 ∈ ((𝑔𝑛) ∩ 𝑆) ↔ (𝑥 ∈ (𝑔𝑛) ∧ 𝑥𝑆))
3029biancomi 465 . . . . . . . . . . 11 (𝑥 ∈ ((𝑔𝑛) ∩ 𝑆) ↔ (𝑥𝑆𝑥 ∈ (𝑔𝑛)))
3130exbii 1848 . . . . . . . . . 10 (∃𝑥 𝑥 ∈ ((𝑔𝑛) ∩ 𝑆) ↔ ∃𝑥(𝑥𝑆𝑥 ∈ (𝑔𝑛)))
32 n0 4312 . . . . . . . . . 10 (((𝑔𝑛) ∩ 𝑆) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑔𝑛) ∩ 𝑆))
33 df-rex 3146 . . . . . . . . . 10 (∃𝑥𝑆 𝑥 ∈ (𝑔𝑛) ↔ ∃𝑥(𝑥𝑆𝑥 ∈ (𝑔𝑛)))
3431, 32, 333bitr4i 305 . . . . . . . . 9 (((𝑔𝑛) ∩ 𝑆) ≠ ∅ ↔ ∃𝑥𝑆 𝑥 ∈ (𝑔𝑛))
3528, 34sylib 220 . . . . . . . 8 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ∃𝑥𝑆 𝑥 ∈ (𝑔𝑛))
362ad2antrr 724 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
373topopn 21516 . . . . . . . . . . . . 13 (𝐽 ∈ Top → 𝑋𝐽)
3836, 37syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑋𝐽)
39 simplr 767 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝑋)
4038, 39ssexd 5230 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ V)
41 fvi 6742 . . . . . . . . . . 11 (𝑆 ∈ V → ( I ‘𝑆) = 𝑆)
4240, 41syl 17 . . . . . . . . . 10 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ( I ‘𝑆) = 𝑆)
4342ad2antrr 724 . . . . . . . . 9 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ( I ‘𝑆) = 𝑆)
4443rexeqdv 3418 . . . . . . . 8 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → (∃𝑥 ∈ ( I ‘𝑆)𝑥 ∈ (𝑔𝑛) ↔ ∃𝑥𝑆 𝑥 ∈ (𝑔𝑛)))
4535, 44mpbird 259 . . . . . . 7 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ 𝑛 ∈ ℕ) → ∃𝑥 ∈ ( I ‘𝑆)𝑥 ∈ (𝑔𝑛))
4645ralrimiva 3184 . . . . . 6 ((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) → ∀𝑛 ∈ ℕ ∃𝑥 ∈ ( I ‘𝑆)𝑥 ∈ (𝑔𝑛))
47 fvex 6685 . . . . . . 7 ( I ‘𝑆) ∈ V
48 nnenom 13351 . . . . . . 7 ℕ ≈ ω
49 eleq1 2902 . . . . . . 7 (𝑥 = (𝑓𝑛) → (𝑥 ∈ (𝑔𝑛) ↔ (𝑓𝑛) ∈ (𝑔𝑛)))
5047, 48, 49axcc4 9863 . . . . . 6 (∀𝑛 ∈ ℕ ∃𝑥 ∈ ( I ‘𝑆)𝑥 ∈ (𝑔𝑛) → ∃𝑓(𝑓:ℕ⟶( I ‘𝑆) ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)))
5146, 50syl 17 . . . . 5 ((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) → ∃𝑓(𝑓:ℕ⟶( I ‘𝑆) ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)))
5242feq3d 6503 . . . . . . . . 9 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → (𝑓:ℕ⟶( I ‘𝑆) ↔ 𝑓:ℕ⟶𝑆))
5352biimpd 231 . . . . . . . 8 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → (𝑓:ℕ⟶( I ‘𝑆) → 𝑓:ℕ⟶𝑆))
5453adantr 483 . . . . . . 7 ((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) → (𝑓:ℕ⟶( I ‘𝑆) → 𝑓:ℕ⟶𝑆))
556ad2antrr 724 . . . . . . . . . 10 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) → 𝑃𝑋)
56 simplr3 1213 . . . . . . . . . . . . 13 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) → ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))
57 eleq2 2903 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
58 fveq2 6672 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (𝑔𝑘) = (𝑔𝑗))
5958sseq1d 4000 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → ((𝑔𝑘) ⊆ 𝑥 ↔ (𝑔𝑗) ⊆ 𝑥))
6059cbvrexvw 3452 . . . . . . . . . . . . . . . 16 (∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥 ↔ ∃𝑗 ∈ ℕ (𝑔𝑗) ⊆ 𝑥)
61 sseq2 3995 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝑔𝑗) ⊆ 𝑥 ↔ (𝑔𝑗) ⊆ 𝑦))
6261rexbidv 3299 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (∃𝑗 ∈ ℕ (𝑔𝑗) ⊆ 𝑥 ↔ ∃𝑗 ∈ ℕ (𝑔𝑗) ⊆ 𝑦))
6360, 62syl5bb 285 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥 ↔ ∃𝑗 ∈ ℕ (𝑔𝑗) ⊆ 𝑦))
6457, 63imbi12d 347 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥) ↔ (𝑃𝑦 → ∃𝑗 ∈ ℕ (𝑔𝑗) ⊆ 𝑦)))
6564rspccva 3624 . . . . . . . . . . . . 13 ((∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥) ∧ 𝑦𝐽) → (𝑃𝑦 → ∃𝑗 ∈ ℕ (𝑔𝑗) ⊆ 𝑦))
6656, 65sylan 582 . . . . . . . . . . . 12 ((((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) ∧ 𝑦𝐽) → (𝑃𝑦 → ∃𝑗 ∈ ℕ (𝑔𝑗) ⊆ 𝑦))
67 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) → (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘))
6867ralimi 3162 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘))
699, 68syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘))
7069adantr 483 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)) ∧ (𝑦𝐽𝑗 ∈ ℕ))) → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘))
71 simprrr 780 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)) ∧ (𝑦𝐽𝑗 ∈ ℕ))) → 𝑗 ∈ ℕ)
72 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑗 → (𝑔𝑛) = (𝑔𝑗))
7372sseq1d 4000 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑗 → ((𝑔𝑛) ⊆ (𝑔𝑗) ↔ (𝑔𝑗) ⊆ (𝑔𝑗)))
7473imbi2d 343 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑗 → (((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔𝑛) ⊆ (𝑔𝑗)) ↔ ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔𝑗) ⊆ (𝑔𝑗))))
75 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
7675sseq1d 4000 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → ((𝑔𝑛) ⊆ (𝑔𝑗) ↔ (𝑔𝑚) ⊆ (𝑔𝑗)))
7776imbi2d 343 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → (((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔𝑛) ⊆ (𝑔𝑗)) ↔ ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔𝑚) ⊆ (𝑔𝑗))))
78 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = (𝑚 + 1) → (𝑔𝑛) = (𝑔‘(𝑚 + 1)))
7978sseq1d 4000 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = (𝑚 + 1) → ((𝑔𝑛) ⊆ (𝑔𝑗) ↔ (𝑔‘(𝑚 + 1)) ⊆ (𝑔𝑗)))
8079imbi2d 343 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = (𝑚 + 1) → (((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔𝑛) ⊆ (𝑔𝑗)) ↔ ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔𝑗))))
81 ssid 3991 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔𝑗) ⊆ (𝑔𝑗)
82812a1i 12 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℤ → ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔𝑗) ⊆ (𝑔𝑗)))
83 eluznn 12321 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ)
84 fvoveq1 7181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 𝑚 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝑚 + 1)))
85 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 𝑚 → (𝑔𝑘) = (𝑔𝑚))
8684, 85sseq12d 4002 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 𝑚 → ((𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ↔ (𝑔‘(𝑚 + 1)) ⊆ (𝑔𝑚)))
8786rspccva 3624 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑚 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔𝑚))
8883, 87sylan2 594 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ (𝑗 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑗))) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔𝑚))
8988anassrs 470 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔𝑚))
90 sstr2 3976 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔‘(𝑚 + 1)) ⊆ (𝑔𝑚) → ((𝑔𝑚) ⊆ (𝑔𝑗) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔𝑗)))
9189, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝑔𝑚) ⊆ (𝑔𝑗) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔𝑗)))
9291expcom 416 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (ℤ𝑗) → ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) → ((𝑔𝑚) ⊆ (𝑔𝑗) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔𝑗))))
9392a2d 29 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (ℤ𝑗) → (((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔𝑚) ⊆ (𝑔𝑗)) → ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔‘(𝑚 + 1)) ⊆ (𝑔𝑗))))
9474, 77, 80, 77, 82, 93uzind4 12309 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (ℤ𝑗) → ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) → (𝑔𝑚) ⊆ (𝑔𝑗)))
9594com12 32 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) → (𝑚 ∈ (ℤ𝑗) → (𝑔𝑚) ⊆ (𝑔𝑗)))
9695ralrimiv 3183 . . . . . . . . . . . . . . . . . . 19 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘) ∧ 𝑗 ∈ ℕ) → ∀𝑚 ∈ (ℤ𝑗)(𝑔𝑚) ⊆ (𝑔𝑗))
9770, 71, 96syl2anc 586 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)) ∧ (𝑦𝐽𝑗 ∈ ℕ))) → ∀𝑚 ∈ (ℤ𝑗)(𝑔𝑚) ⊆ (𝑔𝑗))
98 fveq2 6672 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
9998, 75eleq12d 2909 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑚 → ((𝑓𝑛) ∈ (𝑔𝑛) ↔ (𝑓𝑚) ∈ (𝑔𝑚)))
100 simplr 767 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)) ∧ (𝑦𝐽𝑗 ∈ ℕ)) → ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))
101100ad2antlr 725 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)) ∧ (𝑦𝐽𝑗 ∈ ℕ))) ∧ 𝑚 ∈ (ℤ𝑗)) → ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))
10271, 83sylan 582 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)) ∧ (𝑦𝐽𝑗 ∈ ℕ))) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ)
10399, 101, 102rspcdva 3627 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)) ∧ (𝑦𝐽𝑗 ∈ ℕ))) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑓𝑚) ∈ (𝑔𝑚))
104103ralrimiva 3184 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)) ∧ (𝑦𝐽𝑗 ∈ ℕ))) → ∀𝑚 ∈ (ℤ𝑗)(𝑓𝑚) ∈ (𝑔𝑚))
105 r19.26 3172 . . . . . . . . . . . . . . . . . 18 (∀𝑚 ∈ (ℤ𝑗)((𝑔𝑚) ⊆ (𝑔𝑗) ∧ (𝑓𝑚) ∈ (𝑔𝑚)) ↔ (∀𝑚 ∈ (ℤ𝑗)(𝑔𝑚) ⊆ (𝑔𝑗) ∧ ∀𝑚 ∈ (ℤ𝑗)(𝑓𝑚) ∈ (𝑔𝑚)))
10697, 104, 105sylanbrc 585 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)) ∧ (𝑦𝐽𝑗 ∈ ℕ))) → ∀𝑚 ∈ (ℤ𝑗)((𝑔𝑚) ⊆ (𝑔𝑗) ∧ (𝑓𝑚) ∈ (𝑔𝑚)))
107 ssel2 3964 . . . . . . . . . . . . . . . . . 18 (((𝑔𝑚) ⊆ (𝑔𝑗) ∧ (𝑓𝑚) ∈ (𝑔𝑚)) → (𝑓𝑚) ∈ (𝑔𝑗))
108107ralimi 3162 . . . . . . . . . . . . . . . . 17 (∀𝑚 ∈ (ℤ𝑗)((𝑔𝑚) ⊆ (𝑔𝑗) ∧ (𝑓𝑚) ∈ (𝑔𝑚)) → ∀𝑚 ∈ (ℤ𝑗)(𝑓𝑚) ∈ (𝑔𝑗))
109106, 108syl 17 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)) ∧ (𝑦𝐽𝑗 ∈ ℕ))) → ∀𝑚 ∈ (ℤ𝑗)(𝑓𝑚) ∈ (𝑔𝑗))
110 ssel 3963 . . . . . . . . . . . . . . . . 17 ((𝑔𝑗) ⊆ 𝑦 → ((𝑓𝑚) ∈ (𝑔𝑗) → (𝑓𝑚) ∈ 𝑦))
111110ralimdv 3180 . . . . . . . . . . . . . . . 16 ((𝑔𝑗) ⊆ 𝑦 → (∀𝑚 ∈ (ℤ𝑗)(𝑓𝑚) ∈ (𝑔𝑗) → ∀𝑚 ∈ (ℤ𝑗)(𝑓𝑚) ∈ 𝑦))
112109, 111syl5com 31 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)) ∧ (𝑦𝐽𝑗 ∈ ℕ))) → ((𝑔𝑗) ⊆ 𝑦 → ∀𝑚 ∈ (ℤ𝑗)(𝑓𝑚) ∈ 𝑦))
113112anassrs 470 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) ∧ (𝑦𝐽𝑗 ∈ ℕ)) → ((𝑔𝑗) ⊆ 𝑦 → ∀𝑚 ∈ (ℤ𝑗)(𝑓𝑚) ∈ 𝑦))
114113anassrs 470 . . . . . . . . . . . . 13 (((((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) ∧ 𝑦𝐽) ∧ 𝑗 ∈ ℕ) → ((𝑔𝑗) ⊆ 𝑦 → ∀𝑚 ∈ (ℤ𝑗)(𝑓𝑚) ∈ 𝑦))
115114reximdva 3276 . . . . . . . . . . . 12 ((((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) ∧ 𝑦𝐽) → (∃𝑗 ∈ ℕ (𝑔𝑗) ⊆ 𝑦 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ𝑗)(𝑓𝑚) ∈ 𝑦))
11666, 115syld 47 . . . . . . . . . . 11 ((((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) ∧ 𝑦𝐽) → (𝑃𝑦 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ𝑗)(𝑓𝑚) ∈ 𝑦))
117116ralrimiva 3184 . . . . . . . . . 10 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) → ∀𝑦𝐽 (𝑃𝑦 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ𝑗)(𝑓𝑚) ∈ 𝑦))
11836ad2antrr 724 . . . . . . . . . . . 12 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) → 𝐽 ∈ Top)
1193toptopon 21527 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
120118, 119sylib 220 . . . . . . . . . . 11 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) → 𝐽 ∈ (TopOn‘𝑋))
121 nnuz 12284 . . . . . . . . . . 11 ℕ = (ℤ‘1)
122 1zzd 12016 . . . . . . . . . . 11 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) → 1 ∈ ℤ)
123 simprl 769 . . . . . . . . . . . 12 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) → 𝑓:ℕ⟶𝑆)
12439ad2antrr 724 . . . . . . . . . . . 12 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) → 𝑆𝑋)
125123, 124fssd 6530 . . . . . . . . . . 11 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) → 𝑓:ℕ⟶𝑋)
126 eqidd 2824 . . . . . . . . . . 11 ((((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) = (𝑓𝑚))
127120, 121, 122, 125, 126lmbrf 21870 . . . . . . . . . 10 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) → (𝑓(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑦𝐽 (𝑃𝑦 → ∃𝑗 ∈ ℕ ∀𝑚 ∈ (ℤ𝑗)(𝑓𝑚) ∈ 𝑦))))
12855, 117, 127mpbir2and 711 . . . . . . . . 9 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ (𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛))) → 𝑓(⇝𝑡𝐽)𝑃)
129128expr 459 . . . . . . . 8 (((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) ∧ 𝑓:ℕ⟶𝑆) → (∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛) → 𝑓(⇝𝑡𝐽)𝑃))
130129imdistanda 574 . . . . . . 7 ((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) → ((𝑓:ℕ⟶𝑆 ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)) → (𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)))
13154, 130syland 604 . . . . . 6 ((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) → ((𝑓:ℕ⟶( I ‘𝑆) ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)) → (𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)))
132131eximdv 1918 . . . . 5 ((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) → (∃𝑓(𝑓:ℕ⟶( I ‘𝑆) ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ∈ (𝑔𝑛)) → ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)))
13351, 132mpd 15 . . . 4 ((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑔:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝑃 ∈ (𝑔𝑘) ∧ (𝑔‘(𝑘 + 1)) ⊆ (𝑔𝑘)) ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑥))) → ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃))
1348, 133exlimddv 1936 . . 3 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃))
135134ex 415 . 2 ((𝐽 ∈ 1stω ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)))
1362ad2antrr 724 . . . . . 6 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ (𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)) → 𝐽 ∈ Top)
137136, 119sylib 220 . . . . 5 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ (𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)) → 𝐽 ∈ (TopOn‘𝑋))
138 1zzd 12016 . . . . 5 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ (𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)) → 1 ∈ ℤ)
139 simprr 771 . . . . 5 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ (𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)) → 𝑓(⇝𝑡𝐽)𝑃)
140 simprl 769 . . . . . 6 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ (𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)) → 𝑓:ℕ⟶𝑆)
141140ffvelrnda 6853 . . . . 5 ((((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ (𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝑆)
142 simplr 767 . . . . 5 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ (𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)) → 𝑆𝑋)
143121, 137, 138, 139, 141, 142lmcls 21912 . . . 4 (((𝐽 ∈ 1stω ∧ 𝑆𝑋) ∧ (𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)) → 𝑃 ∈ ((cls‘𝐽)‘𝑆))
144143ex 415 . . 3 ((𝐽 ∈ 1stω ∧ 𝑆𝑋) → ((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃) → 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
145144exlimdv 1934 . 2 ((𝐽 ∈ 1stω ∧ 𝑆𝑋) → (∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃) → 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
146135, 145impbid 214 1 ((𝐽 ∈ 1stω ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  wrex 3141  Vcvv 3496  cin 3937  wss 3938  c0 4293   cuni 4840   class class class wbr 5068   I cid 5461  wf 6353  cfv 6357  (class class class)co 7158  1c1 10540   + caddc 10542  cn 11640  cz 11984  cuz 12246  Topctop 21503  TopOnctopon 21520  clsccl 21628  𝑡clm 21836  1stωc1stc 22047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-top 21504  df-topon 21521  df-cld 21629  df-ntr 21630  df-cls 21631  df-lm 21839  df-1stc 22049
This theorem is referenced by:  1stccnp  22072  hausmapdom  22110  1stckgen  22164  metelcls  23910
  Copyright terms: Public domain W3C validator