MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextsurj Structured version   Visualization version   GIF version

Theorem wwlksnextsurj 27659
Description: Lemma for wwlksnextbij 27661. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextbij0.v 𝑉 = (Vtx‘𝐺)
wwlksnextbij0.e 𝐸 = (Edg‘𝐺)
wwlksnextbij0.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
wwlksnextbij0.r 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
wwlksnextbij0.f 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
Assertion
Ref Expression
wwlksnextsurj (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐹:𝐷onto𝑅)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑊   𝑡,𝐷   𝑛,𝐸,𝑤   𝑡,𝑁,𝑤   𝑡,𝑅   𝑛,𝑉,𝑤   𝑛,𝑊   𝑡,𝑛,𝑁,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐸(𝑡)   𝐹(𝑤,𝑡,𝑛)   𝐺(𝑡,𝑛)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem wwlksnextsurj
Dummy variables 𝑖 𝑑 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlksnextbij0.v . . . 4 𝑉 = (Vtx‘𝐺)
21wwlknbp 27601 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))
3 simp2 1133 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → 𝑁 ∈ ℕ0)
4 wwlksnextbij0.e . . . 4 𝐸 = (Edg‘𝐺)
5 wwlksnextbij0.d . . . 4 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}
6 wwlksnextbij0.r . . . 4 𝑅 = {𝑛𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸}
7 wwlksnextbij0.f . . . 4 𝐹 = (𝑡𝐷 ↦ (lastS‘𝑡))
81, 4, 5, 6, 7wwlksnextfun 27657 . . 3 (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
92, 3, 83syl 18 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐹:𝐷𝑅)
10 preq2 4651 . . . . . 6 (𝑛 = 𝑟 → {(lastS‘𝑊), 𝑛} = {(lastS‘𝑊), 𝑟})
1110eleq1d 2895 . . . . 5 (𝑛 = 𝑟 → ({(lastS‘𝑊), 𝑛} ∈ 𝐸 ↔ {(lastS‘𝑊), 𝑟} ∈ 𝐸))
1211, 6elrab2 3669 . . . 4 (𝑟𝑅 ↔ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸))
131, 4wwlksnext 27652 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸) → (𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))
14133expb 1116 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → (𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))
15 s1cl 13936 . . . . . . . . . . . . . . . . . 18 (𝑟𝑉 → ⟨“𝑟”⟩ ∈ Word 𝑉)
16 pfxccat1 14044 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑟”⟩ ∈ Word 𝑉) → ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)) = 𝑊)
1715, 16sylan2 594 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑟𝑉) → ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)) = 𝑊)
1817ex 415 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word 𝑉 → (𝑟𝑉 → ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)) = 𝑊))
1918adantr 483 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑟𝑉 → ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)) = 𝑊))
20 oveq2 7145 . . . . . . . . . . . . . . . . . 18 ((𝑁 + 1) = (♯‘𝑊) → ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)))
2120eqcoms 2828 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = (𝑁 + 1) → ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)))
2221eqeq1d 2822 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) = (𝑁 + 1) → (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ↔ ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)) = 𝑊))
2322adantl 484 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ↔ ((𝑊 ++ ⟨“𝑟”⟩) prefix (♯‘𝑊)) = 𝑊))
2419, 23sylibrd 261 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑟𝑉 → ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊))
25243adant3 1128 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑟𝑉 → ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊))
261, 4wwlknp 27602 . . . . . . . . . . . . 13 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
2725, 26syl11 33 . . . . . . . . . . . 12 (𝑟𝑉 → (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊))
2827adantr 483 . . . . . . . . . . 11 ((𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊))
2928impcom 410 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊)
30 lswccats1 13973 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉𝑟𝑉) → (lastS‘(𝑊 ++ ⟨“𝑟”⟩)) = 𝑟)
3130eqcomd 2826 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝑟𝑉) → 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩)))
3231ex 415 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝑉 → (𝑟𝑉𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))))
33323ad2ant3 1131 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) → (𝑟𝑉𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))))
342, 33syl 17 . . . . . . . . . . . . . . 15 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑟𝑉𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))))
3534imp 409 . . . . . . . . . . . . . 14 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟𝑉) → 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩)))
3635preq2d 4657 . . . . . . . . . . . . 13 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟𝑉) → {(lastS‘𝑊), 𝑟} = {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))})
3736eleq1d 2895 . . . . . . . . . . . 12 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟𝑉) → ({(lastS‘𝑊), 𝑟} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸))
3837biimpd 231 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟𝑉) → ({(lastS‘𝑊), 𝑟} ∈ 𝐸 → {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸))
3938impr 457 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)
4014, 29, 39jca32 518 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ((𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)))
4133, 2syl11 33 . . . . . . . . . . 11 (𝑟𝑉 → (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))))
4241adantr 483 . . . . . . . . . 10 ((𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))))
4342impcom 410 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩)))
44 ovexd 7172 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → (𝑊 ++ ⟨“𝑟”⟩) ∈ V)
45 eleq1 2898 . . . . . . . . . . . . . . 15 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → (𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺)))
46 oveq1 7144 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → (𝑑 prefix (𝑁 + 1)) = ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)))
4746eqeq1d 2822 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → ((𝑑 prefix (𝑁 + 1)) = 𝑊 ↔ ((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊))
48 fveq2 6651 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → (lastS‘𝑑) = (lastS‘(𝑊 ++ ⟨“𝑟”⟩)))
4948preq2d 4657 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → {(lastS‘𝑊), (lastS‘𝑑)} = {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))})
5049eleq1d 2895 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → ({(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸))
5147, 50anbi12d 632 . . . . . . . . . . . . . . 15 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → (((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) ↔ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)))
5245, 51anbi12d 632 . . . . . . . . . . . . . 14 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ↔ ((𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸))))
5348eqeq2d 2831 . . . . . . . . . . . . . 14 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → (𝑟 = (lastS‘𝑑) ↔ 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))))
5452, 53anbi12d 632 . . . . . . . . . . . . 13 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → (((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑)) ↔ (((𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩)))))
5554bicomd 225 . . . . . . . . . . . 12 (𝑑 = (𝑊 ++ ⟨“𝑟”⟩) → ((((𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))) ↔ ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑))))
5655adantl 484 . . . . . . . . . . 11 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) ∧ 𝑑 = (𝑊 ++ ⟨“𝑟”⟩)) → ((((𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))) ↔ ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑))))
5756biimpd 231 . . . . . . . . . 10 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) ∧ 𝑑 = (𝑊 ++ ⟨“𝑟”⟩)) → ((((𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))) → ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑))))
5844, 57spcimedv 3581 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ((((𝑊 ++ ⟨“𝑟”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑟”⟩) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ ⟨“𝑟”⟩))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ ⟨“𝑟”⟩))) → ∃𝑑((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑))))
5940, 43, 58mp2and 697 . . . . . . . 8 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑)))
60 oveq1 7144 . . . . . . . . . . . . 13 (𝑤 = 𝑑 → (𝑤 prefix (𝑁 + 1)) = (𝑑 prefix (𝑁 + 1)))
6160eqeq1d 2822 . . . . . . . . . . . 12 (𝑤 = 𝑑 → ((𝑤 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑑 prefix (𝑁 + 1)) = 𝑊))
62 fveq2 6651 . . . . . . . . . . . . . 14 (𝑤 = 𝑑 → (lastS‘𝑤) = (lastS‘𝑑))
6362preq2d 4657 . . . . . . . . . . . . 13 (𝑤 = 𝑑 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑑)})
6463eleq1d 2895 . . . . . . . . . . . 12 (𝑤 = 𝑑 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸))
6561, 64anbi12d 632 . . . . . . . . . . 11 (𝑤 = 𝑑 → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)))
6665elrab 3666 . . . . . . . . . 10 (𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ↔ (𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)))
6766anbi1i 625 . . . . . . . . 9 ((𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ∧ 𝑟 = (lastS‘𝑑)) ↔ ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑)))
6867exbii 1848 . . . . . . . 8 (∃𝑑(𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ∧ 𝑟 = (lastS‘𝑑)) ↔ ∃𝑑((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑)))
6959, 68sylibr 236 . . . . . . 7 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑(𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ∧ 𝑟 = (lastS‘𝑑)))
70 df-rex 3139 . . . . . . 7 (∃𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}𝑟 = (lastS‘𝑑) ↔ ∃𝑑(𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ∧ 𝑟 = (lastS‘𝑑)))
7169, 70sylibr 236 . . . . . 6 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}𝑟 = (lastS‘𝑑))
721, 4, 5wwlksnextwrd 27656 . . . . . . . 8 (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐷 = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
7372adantr 483 . . . . . . 7 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → 𝐷 = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)})
7473rexeqdv 3407 . . . . . 6 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → (∃𝑑𝐷 𝑟 = (lastS‘𝑑) ↔ ∃𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}𝑟 = (lastS‘𝑑)))
7571, 74mpbird 259 . . . . 5 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑𝐷 𝑟 = (lastS‘𝑑))
76 fveq2 6651 . . . . . . . 8 (𝑡 = 𝑑 → (lastS‘𝑡) = (lastS‘𝑑))
77 fvex 6664 . . . . . . . 8 (lastS‘𝑑) ∈ V
7876, 7, 77fvmpt 6749 . . . . . . 7 (𝑑𝐷 → (𝐹𝑑) = (lastS‘𝑑))
7978eqeq2d 2831 . . . . . 6 (𝑑𝐷 → (𝑟 = (𝐹𝑑) ↔ 𝑟 = (lastS‘𝑑)))
8079rexbiia 3241 . . . . 5 (∃𝑑𝐷 𝑟 = (𝐹𝑑) ↔ ∃𝑑𝐷 𝑟 = (lastS‘𝑑))
8175, 80sylibr 236 . . . 4 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑𝐷 𝑟 = (𝐹𝑑))
8212, 81sylan2b 595 . . 3 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟𝑅) → ∃𝑑𝐷 𝑟 = (𝐹𝑑))
8382ralrimiva 3177 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∀𝑟𝑅𝑑𝐷 𝑟 = (𝐹𝑑))
84 dffo3 6849 . 2 (𝐹:𝐷onto𝑅 ↔ (𝐹:𝐷𝑅 ∧ ∀𝑟𝑅𝑑𝐷 𝑟 = (𝐹𝑑)))
859, 83, 84sylanbrc 585 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐹:𝐷onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wral 3133  wrex 3134  {crab 3137  Vcvv 3481  {cpr 4550  cmpt 5127  wf 6332  ontowfo 6334  cfv 6336  (class class class)co 7137  0cc0 10518  1c1 10519   + caddc 10521  2c2 11674  0cn0 11879  ..^cfzo 13018  chash 13675  Word cword 13846  lastSclsw 13894   ++ cconcat 13902  ⟨“cs1 13929   prefix cpfx 14012  Vtxcvtx 26762  Edgcedg 26813   WWalksN cwwlksn 27585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442  ax-cnex 10574  ax-resscn 10575  ax-1cn 10576  ax-icn 10577  ax-addcl 10578  ax-addrcl 10579  ax-mulcl 10580  ax-mulrcl 10581  ax-mulcom 10582  ax-addass 10583  ax-mulass 10584  ax-distr 10585  ax-i2m1 10586  ax-1ne0 10587  ax-1rid 10588  ax-rnegex 10589  ax-rrecex 10590  ax-cnre 10591  ax-pre-lttri 10592  ax-pre-lttrn 10593  ax-pre-ltadd 10594  ax-pre-mulgt0 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7095  df-ov 7140  df-oprab 7141  df-mpo 7142  df-om 7562  df-1st 7670  df-2nd 7671  df-wrecs 7928  df-recs 7989  df-rdg 8027  df-1o 8083  df-oadd 8087  df-er 8270  df-map 8389  df-en 8491  df-dom 8492  df-sdom 8493  df-fin 8494  df-card 9349  df-pnf 10658  df-mnf 10659  df-xr 10660  df-ltxr 10661  df-le 10662  df-sub 10853  df-neg 10854  df-nn 11620  df-2 11682  df-n0 11880  df-xnn0 11950  df-z 11964  df-uz 12226  df-rp 12372  df-fz 12878  df-fzo 13019  df-hash 13676  df-word 13847  df-lsw 13895  df-concat 13903  df-s1 13930  df-substr 13983  df-pfx 14013  df-wwlks 27589  df-wwlksn 27590
This theorem is referenced by:  wwlksnextbij0  27660
  Copyright terms: Public domain W3C validator