| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | wwlksnextbij0.v | . . . 4
⊢ 𝑉 = (Vtx‘𝐺) | 
| 2 | 1 | wwlknbp 29862 | . . 3
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉)) | 
| 3 |  | simp2 1138 | . . 3
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word 𝑉) → 𝑁 ∈
ℕ0) | 
| 4 |  | wwlksnextbij0.e | . . . 4
⊢ 𝐸 = (Edg‘𝐺) | 
| 5 |  | wwlksnextbij0.d | . . . 4
⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} | 
| 6 |  | wwlksnextbij0.r | . . . 4
⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} | 
| 7 |  | wwlksnextbij0.f | . . . 4
⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (lastS‘𝑡)) | 
| 8 | 1, 4, 5, 6, 7 | wwlksnextfun 29918 | . . 3
⊢ (𝑁 ∈ ℕ0
→ 𝐹:𝐷⟶𝑅) | 
| 9 | 2, 3, 8 | 3syl 18 | . 2
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐹:𝐷⟶𝑅) | 
| 10 |  | preq2 4734 | . . . . . 6
⊢ (𝑛 = 𝑟 → {(lastS‘𝑊), 𝑛} = {(lastS‘𝑊), 𝑟}) | 
| 11 | 10 | eleq1d 2826 | . . . . 5
⊢ (𝑛 = 𝑟 → ({(lastS‘𝑊), 𝑛} ∈ 𝐸 ↔ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) | 
| 12 | 11, 6 | elrab2 3695 | . . . 4
⊢ (𝑟 ∈ 𝑅 ↔ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) | 
| 13 | 1, 4 | wwlksnext 29913 | . . . . . . . . . . 11
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸) → (𝑊 ++ 〈“𝑟”〉) ∈ ((𝑁 + 1) WWalksN 𝐺)) | 
| 14 | 13 | 3expb 1121 | . . . . . . . . . 10
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → (𝑊 ++ 〈“𝑟”〉) ∈ ((𝑁 + 1) WWalksN 𝐺)) | 
| 15 |  | s1cl 14640 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ 𝑉 → 〈“𝑟”〉 ∈ Word 𝑉) | 
| 16 |  | pfxccat1 14740 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 ∈ Word 𝑉 ∧ 〈“𝑟”〉 ∈ Word 𝑉) → ((𝑊 ++ 〈“𝑟”〉) prefix (♯‘𝑊)) = 𝑊) | 
| 17 | 15, 16 | sylan2 593 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑟 ∈ 𝑉) → ((𝑊 ++ 〈“𝑟”〉) prefix (♯‘𝑊)) = 𝑊) | 
| 18 | 17 | ex 412 | . . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ Word 𝑉 → (𝑟 ∈ 𝑉 → ((𝑊 ++ 〈“𝑟”〉) prefix (♯‘𝑊)) = 𝑊)) | 
| 19 | 18 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑟 ∈ 𝑉 → ((𝑊 ++ 〈“𝑟”〉) prefix (♯‘𝑊)) = 𝑊)) | 
| 20 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 + 1) = (♯‘𝑊) → ((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = ((𝑊 ++ 〈“𝑟”〉) prefix (♯‘𝑊))) | 
| 21 | 20 | eqcoms 2745 | . . . . . . . . . . . . . . . . 17
⊢
((♯‘𝑊) =
(𝑁 + 1) → ((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = ((𝑊 ++ 〈“𝑟”〉) prefix (♯‘𝑊))) | 
| 22 | 21 | eqeq1d 2739 | . . . . . . . . . . . . . . . 16
⊢
((♯‘𝑊) =
(𝑁 + 1) → (((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊 ↔ ((𝑊 ++ 〈“𝑟”〉) prefix (♯‘𝑊)) = 𝑊)) | 
| 23 | 22 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊 ↔ ((𝑊 ++ 〈“𝑟”〉) prefix (♯‘𝑊)) = 𝑊)) | 
| 24 | 19, 23 | sylibrd 259 | . . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑟 ∈ 𝑉 → ((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊)) | 
| 25 | 24 | 3adant3 1133 | . . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑟 ∈ 𝑉 → ((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊)) | 
| 26 | 1, 4 | wwlknp 29863 | . . . . . . . . . . . . 13
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) | 
| 27 | 25, 26 | syl11 33 | . . . . . . . . . . . 12
⊢ (𝑟 ∈ 𝑉 → (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊)) | 
| 28 | 27 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊)) | 
| 29 | 28 | impcom 407 | . . . . . . . . . 10
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊) | 
| 30 |  | lswccats1 14672 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑟 ∈ 𝑉) → (lastS‘(𝑊 ++ 〈“𝑟”〉)) = 𝑟) | 
| 31 | 30 | eqcomd 2743 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑟 ∈ 𝑉) → 𝑟 = (lastS‘(𝑊 ++ 〈“𝑟”〉))) | 
| 32 | 31 | ex 412 | . . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ Word 𝑉 → (𝑟 ∈ 𝑉 → 𝑟 = (lastS‘(𝑊 ++ 〈“𝑟”〉)))) | 
| 33 | 32 | 3ad2ant3 1136 | . . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word 𝑉) → (𝑟 ∈ 𝑉 → 𝑟 = (lastS‘(𝑊 ++ 〈“𝑟”〉)))) | 
| 34 | 2, 33 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑟 ∈ 𝑉 → 𝑟 = (lastS‘(𝑊 ++ 〈“𝑟”〉)))) | 
| 35 | 34 | imp 406 | . . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟 ∈ 𝑉) → 𝑟 = (lastS‘(𝑊 ++ 〈“𝑟”〉))) | 
| 36 | 35 | preq2d 4740 | . . . . . . . . . . . . 13
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟 ∈ 𝑉) → {(lastS‘𝑊), 𝑟} = {(lastS‘𝑊), (lastS‘(𝑊 ++ 〈“𝑟”〉))}) | 
| 37 | 36 | eleq1d 2826 | . . . . . . . . . . . 12
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟 ∈ 𝑉) → ({(lastS‘𝑊), 𝑟} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘(𝑊 ++ 〈“𝑟”〉))} ∈ 𝐸)) | 
| 38 | 37 | biimpd 229 | . . . . . . . . . . 11
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟 ∈ 𝑉) → ({(lastS‘𝑊), 𝑟} ∈ 𝐸 → {(lastS‘𝑊), (lastS‘(𝑊 ++ 〈“𝑟”〉))} ∈ 𝐸)) | 
| 39 | 38 | impr 454 | . . . . . . . . . 10
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → {(lastS‘𝑊), (lastS‘(𝑊 ++ 〈“𝑟”〉))} ∈ 𝐸) | 
| 40 | 14, 29, 39 | jca32 515 | . . . . . . . . 9
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ((𝑊 ++ 〈“𝑟”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ 〈“𝑟”〉))} ∈ 𝐸))) | 
| 41 | 33, 2 | syl11 33 | . . . . . . . . . . 11
⊢ (𝑟 ∈ 𝑉 → (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑟 = (lastS‘(𝑊 ++ 〈“𝑟”〉)))) | 
| 42 | 41 | adantr 480 | . . . . . . . . . 10
⊢ ((𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑟 = (lastS‘(𝑊 ++ 〈“𝑟”〉)))) | 
| 43 | 42 | impcom 407 | . . . . . . . . 9
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → 𝑟 = (lastS‘(𝑊 ++ 〈“𝑟”〉))) | 
| 44 |  | ovexd 7466 | . . . . . . . . . 10
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → (𝑊 ++ 〈“𝑟”〉) ∈ V) | 
| 45 |  | eleq1 2829 | . . . . . . . . . . . . . . 15
⊢ (𝑑 = (𝑊 ++ 〈“𝑟”〉) → (𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ++ 〈“𝑟”〉) ∈ ((𝑁 + 1) WWalksN 𝐺))) | 
| 46 |  | oveq1 7438 | . . . . . . . . . . . . . . . . 17
⊢ (𝑑 = (𝑊 ++ 〈“𝑟”〉) → (𝑑 prefix (𝑁 + 1)) = ((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1))) | 
| 47 | 46 | eqeq1d 2739 | . . . . . . . . . . . . . . . 16
⊢ (𝑑 = (𝑊 ++ 〈“𝑟”〉) → ((𝑑 prefix (𝑁 + 1)) = 𝑊 ↔ ((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊)) | 
| 48 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = (𝑊 ++ 〈“𝑟”〉) → (lastS‘𝑑) = (lastS‘(𝑊 ++ 〈“𝑟”〉))) | 
| 49 | 48 | preq2d 4740 | . . . . . . . . . . . . . . . . 17
⊢ (𝑑 = (𝑊 ++ 〈“𝑟”〉) → {(lastS‘𝑊), (lastS‘𝑑)} = {(lastS‘𝑊), (lastS‘(𝑊 ++ 〈“𝑟”〉))}) | 
| 50 | 49 | eleq1d 2826 | . . . . . . . . . . . . . . . 16
⊢ (𝑑 = (𝑊 ++ 〈“𝑟”〉) → ({(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘(𝑊 ++ 〈“𝑟”〉))} ∈ 𝐸)) | 
| 51 | 47, 50 | anbi12d 632 | . . . . . . . . . . . . . . 15
⊢ (𝑑 = (𝑊 ++ 〈“𝑟”〉) → (((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸) ↔ (((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ 〈“𝑟”〉))} ∈ 𝐸))) | 
| 52 | 45, 51 | anbi12d 632 | . . . . . . . . . . . . . 14
⊢ (𝑑 = (𝑊 ++ 〈“𝑟”〉) → ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ↔ ((𝑊 ++ 〈“𝑟”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ 〈“𝑟”〉))} ∈ 𝐸)))) | 
| 53 | 48 | eqeq2d 2748 | . . . . . . . . . . . . . 14
⊢ (𝑑 = (𝑊 ++ 〈“𝑟”〉) → (𝑟 = (lastS‘𝑑) ↔ 𝑟 = (lastS‘(𝑊 ++ 〈“𝑟”〉)))) | 
| 54 | 52, 53 | anbi12d 632 | . . . . . . . . . . . . 13
⊢ (𝑑 = (𝑊 ++ 〈“𝑟”〉) → (((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑)) ↔ (((𝑊 ++ 〈“𝑟”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ 〈“𝑟”〉))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ 〈“𝑟”〉))))) | 
| 55 | 54 | bicomd 223 | . . . . . . . . . . . 12
⊢ (𝑑 = (𝑊 ++ 〈“𝑟”〉) → ((((𝑊 ++ 〈“𝑟”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ 〈“𝑟”〉))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ 〈“𝑟”〉))) ↔ ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑)))) | 
| 56 | 55 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) ∧ 𝑑 = (𝑊 ++ 〈“𝑟”〉)) → ((((𝑊 ++ 〈“𝑟”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ 〈“𝑟”〉))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ 〈“𝑟”〉))) ↔ ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑)))) | 
| 57 | 56 | biimpd 229 | . . . . . . . . . 10
⊢ (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) ∧ 𝑑 = (𝑊 ++ 〈“𝑟”〉)) → ((((𝑊 ++ 〈“𝑟”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ 〈“𝑟”〉))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ 〈“𝑟”〉))) → ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑)))) | 
| 58 | 44, 57 | spcimedv 3595 | . . . . . . . . 9
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ((((𝑊 ++ 〈“𝑟”〉) ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (((𝑊 ++ 〈“𝑟”〉) prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘(𝑊 ++ 〈“𝑟”〉))} ∈ 𝐸)) ∧ 𝑟 = (lastS‘(𝑊 ++ 〈“𝑟”〉))) → ∃𝑑((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑)))) | 
| 59 | 40, 43, 58 | mp2and 699 | . . . . . . . 8
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑))) | 
| 60 |  | oveq1 7438 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑑 → (𝑤 prefix (𝑁 + 1)) = (𝑑 prefix (𝑁 + 1))) | 
| 61 | 60 | eqeq1d 2739 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑑 → ((𝑤 prefix (𝑁 + 1)) = 𝑊 ↔ (𝑑 prefix (𝑁 + 1)) = 𝑊)) | 
| 62 |  | fveq2 6906 | . . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑑 → (lastS‘𝑤) = (lastS‘𝑑)) | 
| 63 | 62 | preq2d 4740 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑑 → {(lastS‘𝑊), (lastS‘𝑤)} = {(lastS‘𝑊), (lastS‘𝑑)}) | 
| 64 | 63 | eleq1d 2826 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑑 → ({(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸 ↔ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) | 
| 65 | 61, 64 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑑 → (((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸) ↔ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸))) | 
| 66 | 65 | elrab 3692 | . . . . . . . . . 10
⊢ (𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ↔ (𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸))) | 
| 67 | 66 | anbi1i 624 | . . . . . . . . 9
⊢ ((𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ∧ 𝑟 = (lastS‘𝑑)) ↔ ((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑))) | 
| 68 | 67 | exbii 1848 | . . . . . . . 8
⊢
(∃𝑑(𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ∧ 𝑟 = (lastS‘𝑑)) ↔ ∃𝑑((𝑑 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ ((𝑑 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑑)} ∈ 𝐸)) ∧ 𝑟 = (lastS‘𝑑))) | 
| 69 | 59, 68 | sylibr 234 | . . . . . . 7
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑(𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ∧ 𝑟 = (lastS‘𝑑))) | 
| 70 |  | df-rex 3071 | . . . . . . 7
⊢
(∃𝑑 ∈
{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}𝑟 = (lastS‘𝑑) ↔ ∃𝑑(𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} ∧ 𝑟 = (lastS‘𝑑))) | 
| 71 | 69, 70 | sylibr 234 | . . . . . 6
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑 ∈ {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}𝑟 = (lastS‘𝑑)) | 
| 72 | 1, 4, 5 | wwlksnextwrd 29917 | . . . . . . 7
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐷 = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}) | 
| 73 | 72 | adantr 480 | . . . . . 6
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → 𝐷 = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)}) | 
| 74 | 71, 73 | rexeqtrrdv 3331 | . . . . 5
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑 ∈ 𝐷 𝑟 = (lastS‘𝑑)) | 
| 75 |  | fveq2 6906 | . . . . . . . 8
⊢ (𝑡 = 𝑑 → (lastS‘𝑡) = (lastS‘𝑑)) | 
| 76 |  | fvex 6919 | . . . . . . . 8
⊢
(lastS‘𝑑)
∈ V | 
| 77 | 75, 7, 76 | fvmpt 7016 | . . . . . . 7
⊢ (𝑑 ∈ 𝐷 → (𝐹‘𝑑) = (lastS‘𝑑)) | 
| 78 | 77 | eqeq2d 2748 | . . . . . 6
⊢ (𝑑 ∈ 𝐷 → (𝑟 = (𝐹‘𝑑) ↔ 𝑟 = (lastS‘𝑑))) | 
| 79 | 78 | rexbiia 3092 | . . . . 5
⊢
(∃𝑑 ∈
𝐷 𝑟 = (𝐹‘𝑑) ↔ ∃𝑑 ∈ 𝐷 𝑟 = (lastS‘𝑑)) | 
| 80 | 74, 79 | sylibr 234 | . . . 4
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑟 ∈ 𝑉 ∧ {(lastS‘𝑊), 𝑟} ∈ 𝐸)) → ∃𝑑 ∈ 𝐷 𝑟 = (𝐹‘𝑑)) | 
| 81 | 12, 80 | sylan2b 594 | . . 3
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑟 ∈ 𝑅) → ∃𝑑 ∈ 𝐷 𝑟 = (𝐹‘𝑑)) | 
| 82 | 81 | ralrimiva 3146 | . 2
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∀𝑟 ∈ 𝑅 ∃𝑑 ∈ 𝐷 𝑟 = (𝐹‘𝑑)) | 
| 83 |  | dffo3 7122 | . 2
⊢ (𝐹:𝐷–onto→𝑅 ↔ (𝐹:𝐷⟶𝑅 ∧ ∀𝑟 ∈ 𝑅 ∃𝑑 ∈ 𝐷 𝑟 = (𝐹‘𝑑))) | 
| 84 | 9, 82, 83 | sylanbrc 583 | 1
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐹:𝐷–onto→𝑅) |