MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrplem Structured version   Visualization version   GIF version

Theorem ablfacrplem 20109
Description: Lemma for ablfacrp2 20111. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b 𝐵 = (Base‘𝐺)
ablfacrp.o 𝑂 = (od‘𝐺)
ablfacrp.k 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
ablfacrp.l 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
ablfacrp.g (𝜑𝐺 ∈ Abel)
ablfacrp.m (𝜑𝑀 ∈ ℕ)
ablfacrp.n (𝜑𝑁 ∈ ℕ)
ablfacrp.1 (𝜑 → (𝑀 gcd 𝑁) = 1)
ablfacrp.2 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
Assertion
Ref Expression
ablfacrplem (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑂   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem ablfacrplem
Dummy variables 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nprmdvds1 16753 . . . . . . 7 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
21adantl 481 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ¬ 𝑝 ∥ 1)
3 ablfacrp.1 . . . . . . . 8 (𝜑 → (𝑀 gcd 𝑁) = 1)
43adantr 480 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑀 gcd 𝑁) = 1)
54breq2d 5178 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (𝑀 gcd 𝑁) ↔ 𝑝 ∥ 1))
62, 5mtbird 325 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ¬ 𝑝 ∥ (𝑀 gcd 𝑁))
7 ablfacrp.k . . . . . . . . . . . . . 14 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
8 ablfacrp.g . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Abel)
9 ablfacrp.m . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
109nnzd 12666 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℤ)
11 ablfacrp.o . . . . . . . . . . . . . . . 16 𝑂 = (od‘𝐺)
12 ablfacrp.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐺)
1311, 12oddvdssubg 19897 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
148, 10, 13syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
157, 14eqeltrid 2848 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (SubGrp‘𝐺))
1615ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝐾 ∈ (SubGrp‘𝐺))
17 eqid 2740 . . . . . . . . . . . . 13 (𝐺s 𝐾) = (𝐺s 𝐾)
1817subggrp 19169 . . . . . . . . . . . 12 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺s 𝐾) ∈ Grp)
1916, 18syl 17 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (𝐺s 𝐾) ∈ Grp)
2017subgbas 19170 . . . . . . . . . . . . 13 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 = (Base‘(𝐺s 𝐾)))
2116, 20syl 17 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝐾 = (Base‘(𝐺s 𝐾)))
22 ablfacrp.2 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
239nnnn0d 12613 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℕ0)
24 ablfacrp.n . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ)
2524nnnn0d 12613 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
2623, 25nn0mulcld 12618 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 · 𝑁) ∈ ℕ0)
2722, 26eqeltrd 2844 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝐵) ∈ ℕ0)
2812fvexi 6934 . . . . . . . . . . . . . . . 16 𝐵 ∈ V
29 hashclb 14407 . . . . . . . . . . . . . . . 16 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
3028, 29ax-mp 5 . . . . . . . . . . . . . . 15 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
3127, 30sylibr 234 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ Fin)
327ssrab3 4105 . . . . . . . . . . . . . 14 𝐾𝐵
33 ssfi 9240 . . . . . . . . . . . . . 14 ((𝐵 ∈ Fin ∧ 𝐾𝐵) → 𝐾 ∈ Fin)
3431, 32, 33sylancl 585 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Fin)
3534ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝐾 ∈ Fin)
3621, 35eqeltrrd 2845 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (Base‘(𝐺s 𝐾)) ∈ Fin)
37 simplr 768 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝 ∈ ℙ)
38 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝 ∥ (♯‘𝐾))
3921fveq2d 6924 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (♯‘𝐾) = (♯‘(Base‘(𝐺s 𝐾))))
4038, 39breqtrd 5192 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝 ∥ (♯‘(Base‘(𝐺s 𝐾))))
41 eqid 2740 . . . . . . . . . . . 12 (Base‘(𝐺s 𝐾)) = (Base‘(𝐺s 𝐾))
42 eqid 2740 . . . . . . . . . . . 12 (od‘(𝐺s 𝐾)) = (od‘(𝐺s 𝐾))
4341, 42odcau 19646 . . . . . . . . . . 11 ((((𝐺s 𝐾) ∈ Grp ∧ (Base‘(𝐺s 𝐾)) ∈ Fin ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘(Base‘(𝐺s 𝐾)))) → ∃𝑔 ∈ (Base‘(𝐺s 𝐾))((od‘(𝐺s 𝐾))‘𝑔) = 𝑝)
4419, 36, 37, 40, 43syl31anc 1373 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → ∃𝑔 ∈ (Base‘(𝐺s 𝐾))((od‘(𝐺s 𝐾))‘𝑔) = 𝑝)
4544, 21rexeqtrrdv 3339 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → ∃𝑔𝐾 ((od‘(𝐺s 𝐾))‘𝑔) = 𝑝)
4617, 11, 42subgod 19612 . . . . . . . . . . . . 13 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔𝐾) → (𝑂𝑔) = ((od‘(𝐺s 𝐾))‘𝑔))
4716, 46sylan 579 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → (𝑂𝑔) = ((od‘(𝐺s 𝐾))‘𝑔))
48 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑔 → (𝑂𝑥) = (𝑂𝑔))
4948breq1d 5176 . . . . . . . . . . . . . . 15 (𝑥 = 𝑔 → ((𝑂𝑥) ∥ 𝑀 ↔ (𝑂𝑔) ∥ 𝑀))
5049, 7elrab2 3711 . . . . . . . . . . . . . 14 (𝑔𝐾 ↔ (𝑔𝐵 ∧ (𝑂𝑔) ∥ 𝑀))
5150simprbi 496 . . . . . . . . . . . . 13 (𝑔𝐾 → (𝑂𝑔) ∥ 𝑀)
5251adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → (𝑂𝑔) ∥ 𝑀)
5347, 52eqbrtrrd 5190 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → ((od‘(𝐺s 𝐾))‘𝑔) ∥ 𝑀)
54 breq1 5169 . . . . . . . . . . 11 (((od‘(𝐺s 𝐾))‘𝑔) = 𝑝 → (((od‘(𝐺s 𝐾))‘𝑔) ∥ 𝑀𝑝𝑀))
5553, 54syl5ibcom 245 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → (((od‘(𝐺s 𝐾))‘𝑔) = 𝑝𝑝𝑀))
5655rexlimdva 3161 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (∃𝑔𝐾 ((od‘(𝐺s 𝐾))‘𝑔) = 𝑝𝑝𝑀))
5745, 56mpd 15 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝𝑀)
5857ex 412 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (♯‘𝐾) → 𝑝𝑀))
5958anim1d 610 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((𝑝 ∥ (♯‘𝐾) ∧ 𝑝𝑁) → (𝑝𝑀𝑝𝑁)))
60 prmz 16722 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
6160adantl 481 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
62 hashcl 14405 . . . . . . . . . 10 (𝐾 ∈ Fin → (♯‘𝐾) ∈ ℕ0)
6334, 62syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐾) ∈ ℕ0)
6463nn0zd 12665 . . . . . . . 8 (𝜑 → (♯‘𝐾) ∈ ℤ)
6564adantr 480 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (♯‘𝐾) ∈ ℤ)
6624nnzd 12666 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
6766adantr 480 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
68 dvdsgcdb 16592 . . . . . . 7 ((𝑝 ∈ ℤ ∧ (♯‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝 ∥ (♯‘𝐾) ∧ 𝑝𝑁) ↔ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁)))
6961, 65, 67, 68syl3anc 1371 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((𝑝 ∥ (♯‘𝐾) ∧ 𝑝𝑁) ↔ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁)))
7010adantr 480 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ ℤ)
71 dvdsgcdb 16592 . . . . . . 7 ((𝑝 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝𝑀𝑝𝑁) ↔ 𝑝 ∥ (𝑀 gcd 𝑁)))
7261, 70, 67, 71syl3anc 1371 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((𝑝𝑀𝑝𝑁) ↔ 𝑝 ∥ (𝑀 gcd 𝑁)))
7359, 69, 723imtr3d 293 . . . . 5 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ ((♯‘𝐾) gcd 𝑁) → 𝑝 ∥ (𝑀 gcd 𝑁)))
746, 73mtod 198 . . . 4 ((𝜑𝑝 ∈ ℙ) → ¬ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁))
7574nrexdv 3155 . . 3 (𝜑 → ¬ ∃𝑝 ∈ ℙ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁))
76 exprmfct 16751 . . 3 (((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁))
7775, 76nsyl 140 . 2 (𝜑 → ¬ ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2))
7824nnne0d 12343 . . . . . 6 (𝜑𝑁 ≠ 0)
79 simpr 484 . . . . . . 7 (((♯‘𝐾) = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
8079necon3ai 2971 . . . . . 6 (𝑁 ≠ 0 → ¬ ((♯‘𝐾) = 0 ∧ 𝑁 = 0))
8178, 80syl 17 . . . . 5 (𝜑 → ¬ ((♯‘𝐾) = 0 ∧ 𝑁 = 0))
82 gcdn0cl 16548 . . . . 5 ((((♯‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ ((♯‘𝐾) = 0 ∧ 𝑁 = 0)) → ((♯‘𝐾) gcd 𝑁) ∈ ℕ)
8364, 66, 81, 82syl21anc 837 . . . 4 (𝜑 → ((♯‘𝐾) gcd 𝑁) ∈ ℕ)
84 elnn1uz2 12990 . . . 4 (((♯‘𝐾) gcd 𝑁) ∈ ℕ ↔ (((♯‘𝐾) gcd 𝑁) = 1 ∨ ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2)))
8583, 84sylib 218 . . 3 (𝜑 → (((♯‘𝐾) gcd 𝑁) = 1 ∨ ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2)))
8685ord 863 . 2 (𝜑 → (¬ ((♯‘𝐾) gcd 𝑁) = 1 → ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2)))
8777, 86mt3d 148 1 (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  Vcvv 3488  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  0cc0 11184  1c1 11185   · cmul 11189  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  chash 14379  cdvds 16302   gcd cgcd 16540  cprime 16718  Basecbs 17258  s cress 17287  Grpcgrp 18973  SubGrpcsubg 19160  odcod 19566  Abelcabl 19823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-eqg 19165  df-ga 19330  df-od 19570  df-cmn 19824  df-abl 19825
This theorem is referenced by:  ablfacrp2  20111
  Copyright terms: Public domain W3C validator