MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrplem Structured version   Visualization version   GIF version

Theorem ablfacrplem 19668
Description: Lemma for ablfacrp2 19670. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b 𝐵 = (Base‘𝐺)
ablfacrp.o 𝑂 = (od‘𝐺)
ablfacrp.k 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
ablfacrp.l 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
ablfacrp.g (𝜑𝐺 ∈ Abel)
ablfacrp.m (𝜑𝑀 ∈ ℕ)
ablfacrp.n (𝜑𝑁 ∈ ℕ)
ablfacrp.1 (𝜑 → (𝑀 gcd 𝑁) = 1)
ablfacrp.2 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
Assertion
Ref Expression
ablfacrplem (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑂   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem ablfacrplem
Dummy variables 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nprmdvds1 16411 . . . . . . 7 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
21adantl 482 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ¬ 𝑝 ∥ 1)
3 ablfacrp.1 . . . . . . . 8 (𝜑 → (𝑀 gcd 𝑁) = 1)
43adantr 481 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑀 gcd 𝑁) = 1)
54breq2d 5086 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (𝑀 gcd 𝑁) ↔ 𝑝 ∥ 1))
62, 5mtbird 325 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ¬ 𝑝 ∥ (𝑀 gcd 𝑁))
7 ablfacrp.k . . . . . . . . . . . . . 14 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
8 ablfacrp.g . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Abel)
9 ablfacrp.m . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
109nnzd 12425 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℤ)
11 ablfacrp.o . . . . . . . . . . . . . . . 16 𝑂 = (od‘𝐺)
12 ablfacrp.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐺)
1311, 12oddvdssubg 19456 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
148, 10, 13syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
157, 14eqeltrid 2843 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (SubGrp‘𝐺))
1615ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝐾 ∈ (SubGrp‘𝐺))
17 eqid 2738 . . . . . . . . . . . . 13 (𝐺s 𝐾) = (𝐺s 𝐾)
1817subggrp 18758 . . . . . . . . . . . 12 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺s 𝐾) ∈ Grp)
1916, 18syl 17 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (𝐺s 𝐾) ∈ Grp)
2017subgbas 18759 . . . . . . . . . . . . 13 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 = (Base‘(𝐺s 𝐾)))
2116, 20syl 17 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝐾 = (Base‘(𝐺s 𝐾)))
22 ablfacrp.2 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
239nnnn0d 12293 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℕ0)
24 ablfacrp.n . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ)
2524nnnn0d 12293 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
2623, 25nn0mulcld 12298 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 · 𝑁) ∈ ℕ0)
2722, 26eqeltrd 2839 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝐵) ∈ ℕ0)
2812fvexi 6788 . . . . . . . . . . . . . . . 16 𝐵 ∈ V
29 hashclb 14073 . . . . . . . . . . . . . . . 16 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
3028, 29ax-mp 5 . . . . . . . . . . . . . . 15 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
3127, 30sylibr 233 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ Fin)
327ssrab3 4015 . . . . . . . . . . . . . 14 𝐾𝐵
33 ssfi 8956 . . . . . . . . . . . . . 14 ((𝐵 ∈ Fin ∧ 𝐾𝐵) → 𝐾 ∈ Fin)
3431, 32, 33sylancl 586 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Fin)
3534ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝐾 ∈ Fin)
3621, 35eqeltrrd 2840 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (Base‘(𝐺s 𝐾)) ∈ Fin)
37 simplr 766 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝 ∈ ℙ)
38 simpr 485 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝 ∥ (♯‘𝐾))
3921fveq2d 6778 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (♯‘𝐾) = (♯‘(Base‘(𝐺s 𝐾))))
4038, 39breqtrd 5100 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝 ∥ (♯‘(Base‘(𝐺s 𝐾))))
41 eqid 2738 . . . . . . . . . . . 12 (Base‘(𝐺s 𝐾)) = (Base‘(𝐺s 𝐾))
42 eqid 2738 . . . . . . . . . . . 12 (od‘(𝐺s 𝐾)) = (od‘(𝐺s 𝐾))
4341, 42odcau 19209 . . . . . . . . . . 11 ((((𝐺s 𝐾) ∈ Grp ∧ (Base‘(𝐺s 𝐾)) ∈ Fin ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘(Base‘(𝐺s 𝐾)))) → ∃𝑔 ∈ (Base‘(𝐺s 𝐾))((od‘(𝐺s 𝐾))‘𝑔) = 𝑝)
4419, 36, 37, 40, 43syl31anc 1372 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → ∃𝑔 ∈ (Base‘(𝐺s 𝐾))((od‘(𝐺s 𝐾))‘𝑔) = 𝑝)
4521rexeqdv 3349 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (∃𝑔𝐾 ((od‘(𝐺s 𝐾))‘𝑔) = 𝑝 ↔ ∃𝑔 ∈ (Base‘(𝐺s 𝐾))((od‘(𝐺s 𝐾))‘𝑔) = 𝑝))
4644, 45mpbird 256 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → ∃𝑔𝐾 ((od‘(𝐺s 𝐾))‘𝑔) = 𝑝)
4717, 11, 42subgod 19175 . . . . . . . . . . . . 13 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔𝐾) → (𝑂𝑔) = ((od‘(𝐺s 𝐾))‘𝑔))
4816, 47sylan 580 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → (𝑂𝑔) = ((od‘(𝐺s 𝐾))‘𝑔))
49 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑔 → (𝑂𝑥) = (𝑂𝑔))
5049breq1d 5084 . . . . . . . . . . . . . . 15 (𝑥 = 𝑔 → ((𝑂𝑥) ∥ 𝑀 ↔ (𝑂𝑔) ∥ 𝑀))
5150, 7elrab2 3627 . . . . . . . . . . . . . 14 (𝑔𝐾 ↔ (𝑔𝐵 ∧ (𝑂𝑔) ∥ 𝑀))
5251simprbi 497 . . . . . . . . . . . . 13 (𝑔𝐾 → (𝑂𝑔) ∥ 𝑀)
5352adantl 482 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → (𝑂𝑔) ∥ 𝑀)
5448, 53eqbrtrrd 5098 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → ((od‘(𝐺s 𝐾))‘𝑔) ∥ 𝑀)
55 breq1 5077 . . . . . . . . . . 11 (((od‘(𝐺s 𝐾))‘𝑔) = 𝑝 → (((od‘(𝐺s 𝐾))‘𝑔) ∥ 𝑀𝑝𝑀))
5654, 55syl5ibcom 244 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → (((od‘(𝐺s 𝐾))‘𝑔) = 𝑝𝑝𝑀))
5756rexlimdva 3213 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (∃𝑔𝐾 ((od‘(𝐺s 𝐾))‘𝑔) = 𝑝𝑝𝑀))
5846, 57mpd 15 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝𝑀)
5958ex 413 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (♯‘𝐾) → 𝑝𝑀))
6059anim1d 611 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((𝑝 ∥ (♯‘𝐾) ∧ 𝑝𝑁) → (𝑝𝑀𝑝𝑁)))
61 prmz 16380 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
6261adantl 482 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
63 hashcl 14071 . . . . . . . . . 10 (𝐾 ∈ Fin → (♯‘𝐾) ∈ ℕ0)
6434, 63syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐾) ∈ ℕ0)
6564nn0zd 12424 . . . . . . . 8 (𝜑 → (♯‘𝐾) ∈ ℤ)
6665adantr 481 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (♯‘𝐾) ∈ ℤ)
6724nnzd 12425 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
6867adantr 481 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
69 dvdsgcdb 16253 . . . . . . 7 ((𝑝 ∈ ℤ ∧ (♯‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝 ∥ (♯‘𝐾) ∧ 𝑝𝑁) ↔ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁)))
7062, 66, 68, 69syl3anc 1370 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((𝑝 ∥ (♯‘𝐾) ∧ 𝑝𝑁) ↔ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁)))
7110adantr 481 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ ℤ)
72 dvdsgcdb 16253 . . . . . . 7 ((𝑝 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝𝑀𝑝𝑁) ↔ 𝑝 ∥ (𝑀 gcd 𝑁)))
7362, 71, 68, 72syl3anc 1370 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((𝑝𝑀𝑝𝑁) ↔ 𝑝 ∥ (𝑀 gcd 𝑁)))
7460, 70, 733imtr3d 293 . . . . 5 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ ((♯‘𝐾) gcd 𝑁) → 𝑝 ∥ (𝑀 gcd 𝑁)))
756, 74mtod 197 . . . 4 ((𝜑𝑝 ∈ ℙ) → ¬ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁))
7675nrexdv 3198 . . 3 (𝜑 → ¬ ∃𝑝 ∈ ℙ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁))
77 exprmfct 16409 . . 3 (((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁))
7876, 77nsyl 140 . 2 (𝜑 → ¬ ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2))
7924nnne0d 12023 . . . . . 6 (𝜑𝑁 ≠ 0)
80 simpr 485 . . . . . . 7 (((♯‘𝐾) = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
8180necon3ai 2968 . . . . . 6 (𝑁 ≠ 0 → ¬ ((♯‘𝐾) = 0 ∧ 𝑁 = 0))
8279, 81syl 17 . . . . 5 (𝜑 → ¬ ((♯‘𝐾) = 0 ∧ 𝑁 = 0))
83 gcdn0cl 16209 . . . . 5 ((((♯‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ ((♯‘𝐾) = 0 ∧ 𝑁 = 0)) → ((♯‘𝐾) gcd 𝑁) ∈ ℕ)
8465, 67, 82, 83syl21anc 835 . . . 4 (𝜑 → ((♯‘𝐾) gcd 𝑁) ∈ ℕ)
85 elnn1uz2 12665 . . . 4 (((♯‘𝐾) gcd 𝑁) ∈ ℕ ↔ (((♯‘𝐾) gcd 𝑁) = 1 ∨ ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2)))
8684, 85sylib 217 . . 3 (𝜑 → (((♯‘𝐾) gcd 𝑁) = 1 ∨ ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2)))
8786ord 861 . 2 (𝜑 → (¬ ((♯‘𝐾) gcd 𝑁) = 1 → ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2)))
8878, 87mt3d 148 1 (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  Vcvv 3432  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  Fincfn 8733  0cc0 10871  1c1 10872   · cmul 10876  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  chash 14044  cdvds 15963   gcd cgcd 16201  cprime 16376  Basecbs 16912  s cress 16941  Grpcgrp 18577  SubGrpcsubg 18749  odcod 19132  Abelcabl 19387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-eqg 18754  df-ga 18896  df-od 19136  df-cmn 19388  df-abl 19389
This theorem is referenced by:  ablfacrp2  19670
  Copyright terms: Public domain W3C validator