MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrplem Structured version   Visualization version   GIF version

Theorem ablfacrplem 19183
Description: Lemma for ablfacrp2 19185. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b 𝐵 = (Base‘𝐺)
ablfacrp.o 𝑂 = (od‘𝐺)
ablfacrp.k 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
ablfacrp.l 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
ablfacrp.g (𝜑𝐺 ∈ Abel)
ablfacrp.m (𝜑𝑀 ∈ ℕ)
ablfacrp.n (𝜑𝑁 ∈ ℕ)
ablfacrp.1 (𝜑 → (𝑀 gcd 𝑁) = 1)
ablfacrp.2 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
Assertion
Ref Expression
ablfacrplem (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑂   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem ablfacrplem
Dummy variables 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nprmdvds1 16044 . . . . . . 7 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
21adantl 485 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ¬ 𝑝 ∥ 1)
3 ablfacrp.1 . . . . . . . 8 (𝜑 → (𝑀 gcd 𝑁) = 1)
43adantr 484 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑀 gcd 𝑁) = 1)
54breq2d 5064 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (𝑀 gcd 𝑁) ↔ 𝑝 ∥ 1))
62, 5mtbird 328 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ¬ 𝑝 ∥ (𝑀 gcd 𝑁))
7 ablfacrp.k . . . . . . . . . . . . . 14 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
8 ablfacrp.g . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Abel)
9 ablfacrp.m . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
109nnzd 12079 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℤ)
11 ablfacrp.o . . . . . . . . . . . . . . . 16 𝑂 = (od‘𝐺)
12 ablfacrp.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐺)
1311, 12oddvdssubg 18971 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
148, 10, 13syl2anc 587 . . . . . . . . . . . . . 14 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
157, 14eqeltrid 2920 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (SubGrp‘𝐺))
1615ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝐾 ∈ (SubGrp‘𝐺))
17 eqid 2824 . . . . . . . . . . . . 13 (𝐺s 𝐾) = (𝐺s 𝐾)
1817subggrp 18278 . . . . . . . . . . . 12 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺s 𝐾) ∈ Grp)
1916, 18syl 17 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (𝐺s 𝐾) ∈ Grp)
2017subgbas 18279 . . . . . . . . . . . . 13 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 = (Base‘(𝐺s 𝐾)))
2116, 20syl 17 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝐾 = (Base‘(𝐺s 𝐾)))
22 ablfacrp.2 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
239nnnn0d 11948 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℕ0)
24 ablfacrp.n . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ)
2524nnnn0d 11948 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
2623, 25nn0mulcld 11953 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 · 𝑁) ∈ ℕ0)
2722, 26eqeltrd 2916 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝐵) ∈ ℕ0)
2812fvexi 6672 . . . . . . . . . . . . . . . 16 𝐵 ∈ V
29 hashclb 13720 . . . . . . . . . . . . . . . 16 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
3028, 29ax-mp 5 . . . . . . . . . . . . . . 15 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
3127, 30sylibr 237 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ Fin)
327ssrab3 4042 . . . . . . . . . . . . . 14 𝐾𝐵
33 ssfi 8729 . . . . . . . . . . . . . 14 ((𝐵 ∈ Fin ∧ 𝐾𝐵) → 𝐾 ∈ Fin)
3431, 32, 33sylancl 589 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Fin)
3534ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝐾 ∈ Fin)
3621, 35eqeltrrd 2917 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (Base‘(𝐺s 𝐾)) ∈ Fin)
37 simplr 768 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝 ∈ ℙ)
38 simpr 488 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝 ∥ (♯‘𝐾))
3921fveq2d 6662 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (♯‘𝐾) = (♯‘(Base‘(𝐺s 𝐾))))
4038, 39breqtrd 5078 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝 ∥ (♯‘(Base‘(𝐺s 𝐾))))
41 eqid 2824 . . . . . . . . . . . 12 (Base‘(𝐺s 𝐾)) = (Base‘(𝐺s 𝐾))
42 eqid 2824 . . . . . . . . . . . 12 (od‘(𝐺s 𝐾)) = (od‘(𝐺s 𝐾))
4341, 42odcau 18725 . . . . . . . . . . 11 ((((𝐺s 𝐾) ∈ Grp ∧ (Base‘(𝐺s 𝐾)) ∈ Fin ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘(Base‘(𝐺s 𝐾)))) → ∃𝑔 ∈ (Base‘(𝐺s 𝐾))((od‘(𝐺s 𝐾))‘𝑔) = 𝑝)
4419, 36, 37, 40, 43syl31anc 1370 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → ∃𝑔 ∈ (Base‘(𝐺s 𝐾))((od‘(𝐺s 𝐾))‘𝑔) = 𝑝)
4521rexeqdv 3404 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (∃𝑔𝐾 ((od‘(𝐺s 𝐾))‘𝑔) = 𝑝 ↔ ∃𝑔 ∈ (Base‘(𝐺s 𝐾))((od‘(𝐺s 𝐾))‘𝑔) = 𝑝))
4644, 45mpbird 260 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → ∃𝑔𝐾 ((od‘(𝐺s 𝐾))‘𝑔) = 𝑝)
4717, 11, 42subgod 18691 . . . . . . . . . . . . 13 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔𝐾) → (𝑂𝑔) = ((od‘(𝐺s 𝐾))‘𝑔))
4816, 47sylan 583 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → (𝑂𝑔) = ((od‘(𝐺s 𝐾))‘𝑔))
49 fveq2 6658 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑔 → (𝑂𝑥) = (𝑂𝑔))
5049breq1d 5062 . . . . . . . . . . . . . . 15 (𝑥 = 𝑔 → ((𝑂𝑥) ∥ 𝑀 ↔ (𝑂𝑔) ∥ 𝑀))
5150, 7elrab2 3669 . . . . . . . . . . . . . 14 (𝑔𝐾 ↔ (𝑔𝐵 ∧ (𝑂𝑔) ∥ 𝑀))
5251simprbi 500 . . . . . . . . . . . . 13 (𝑔𝐾 → (𝑂𝑔) ∥ 𝑀)
5352adantl 485 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → (𝑂𝑔) ∥ 𝑀)
5448, 53eqbrtrrd 5076 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → ((od‘(𝐺s 𝐾))‘𝑔) ∥ 𝑀)
55 breq1 5055 . . . . . . . . . . 11 (((od‘(𝐺s 𝐾))‘𝑔) = 𝑝 → (((od‘(𝐺s 𝐾))‘𝑔) ∥ 𝑀𝑝𝑀))
5654, 55syl5ibcom 248 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) ∧ 𝑔𝐾) → (((od‘(𝐺s 𝐾))‘𝑔) = 𝑝𝑝𝑀))
5756rexlimdva 3277 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → (∃𝑔𝐾 ((od‘(𝐺s 𝐾))‘𝑔) = 𝑝𝑝𝑀))
5846, 57mpd 15 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝 ∥ (♯‘𝐾)) → 𝑝𝑀)
5958ex 416 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (♯‘𝐾) → 𝑝𝑀))
6059anim1d 613 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((𝑝 ∥ (♯‘𝐾) ∧ 𝑝𝑁) → (𝑝𝑀𝑝𝑁)))
61 prmz 16013 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
6261adantl 485 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
63 hashcl 13718 . . . . . . . . . 10 (𝐾 ∈ Fin → (♯‘𝐾) ∈ ℕ0)
6434, 63syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐾) ∈ ℕ0)
6564nn0zd 12078 . . . . . . . 8 (𝜑 → (♯‘𝐾) ∈ ℤ)
6665adantr 484 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (♯‘𝐾) ∈ ℤ)
6724nnzd 12079 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
6867adantr 484 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
69 dvdsgcdb 15887 . . . . . . 7 ((𝑝 ∈ ℤ ∧ (♯‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝 ∥ (♯‘𝐾) ∧ 𝑝𝑁) ↔ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁)))
7062, 66, 68, 69syl3anc 1368 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((𝑝 ∥ (♯‘𝐾) ∧ 𝑝𝑁) ↔ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁)))
7110adantr 484 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → 𝑀 ∈ ℤ)
72 dvdsgcdb 15887 . . . . . . 7 ((𝑝 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝𝑀𝑝𝑁) ↔ 𝑝 ∥ (𝑀 gcd 𝑁)))
7362, 71, 68, 72syl3anc 1368 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((𝑝𝑀𝑝𝑁) ↔ 𝑝 ∥ (𝑀 gcd 𝑁)))
7460, 70, 733imtr3d 296 . . . . 5 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ ((♯‘𝐾) gcd 𝑁) → 𝑝 ∥ (𝑀 gcd 𝑁)))
756, 74mtod 201 . . . 4 ((𝜑𝑝 ∈ ℙ) → ¬ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁))
7675nrexdv 3263 . . 3 (𝜑 → ¬ ∃𝑝 ∈ ℙ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁))
77 exprmfct 16042 . . 3 (((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((♯‘𝐾) gcd 𝑁))
7876, 77nsyl 142 . 2 (𝜑 → ¬ ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2))
7924nnne0d 11680 . . . . . 6 (𝜑𝑁 ≠ 0)
80 simpr 488 . . . . . . 7 (((♯‘𝐾) = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
8180necon3ai 3039 . . . . . 6 (𝑁 ≠ 0 → ¬ ((♯‘𝐾) = 0 ∧ 𝑁 = 0))
8279, 81syl 17 . . . . 5 (𝜑 → ¬ ((♯‘𝐾) = 0 ∧ 𝑁 = 0))
83 gcdn0cl 15845 . . . . 5 ((((♯‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ ((♯‘𝐾) = 0 ∧ 𝑁 = 0)) → ((♯‘𝐾) gcd 𝑁) ∈ ℕ)
8465, 67, 82, 83syl21anc 836 . . . 4 (𝜑 → ((♯‘𝐾) gcd 𝑁) ∈ ℕ)
85 elnn1uz2 12318 . . . 4 (((♯‘𝐾) gcd 𝑁) ∈ ℕ ↔ (((♯‘𝐾) gcd 𝑁) = 1 ∨ ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2)))
8684, 85sylib 221 . . 3 (𝜑 → (((♯‘𝐾) gcd 𝑁) = 1 ∨ ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2)))
8786ord 861 . 2 (𝜑 → (¬ ((♯‘𝐾) gcd 𝑁) = 1 → ((♯‘𝐾) gcd 𝑁) ∈ (ℤ‘2)))
8878, 87mt3d 150 1 (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2115  wne 3014  wrex 3134  {crab 3137  Vcvv 3480  wss 3919   class class class wbr 5052  cfv 6343  (class class class)co 7145  Fincfn 8499  0cc0 10529  1c1 10530   · cmul 10534  cn 11630  2c2 11685  0cn0 11890  cz 11974  cuz 12236  chash 13691  cdvds 15603   gcd cgcd 15837  cprime 16009  Basecbs 16479  s cress 16480  Grpcgrp 18099  SubGrpcsubg 18269  odcod 18648  Abelcabl 18903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-inf2 9095  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-disj 5018  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-2o 8093  df-oadd 8096  df-omul 8097  df-er 8279  df-ec 8281  df-qs 8285  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-sup 8897  df-inf 8898  df-oi 8965  df-dju 9321  df-card 9359  df-acn 9362  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-n0 11891  df-xnn0 11961  df-z 11975  df-uz 12237  df-q 12342  df-rp 12383  df-fz 12891  df-fzo 13034  df-fl 13162  df-mod 13238  df-seq 13370  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-dvds 15604  df-gcd 15838  df-prm 16010  df-pc 16168  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-eqg 18274  df-ga 18416  df-od 18652  df-cmn 18904  df-abl 18905
This theorem is referenced by:  ablfacrp2  19185
  Copyright terms: Public domain W3C validator