MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac2 Structured version   Visualization version   GIF version

Theorem ablfac2 19998
Description: Choose generators for each cyclic group in ablfac 19997. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
ablfac.b 𝐵 = (Base‘𝐺)
ablfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
ablfac.1 (𝜑𝐺 ∈ Abel)
ablfac.2 (𝜑𝐵 ∈ Fin)
ablfac2.m · = (.g𝐺)
ablfac2.s 𝑆 = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
Assertion
Ref Expression
ablfac2 (𝜑 → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
Distinct variable groups:   𝑆,𝑟   𝑘,𝑛,𝑟,𝑤,𝐵   · ,𝑘,𝑤   𝐶,𝑘,𝑛,𝑤   𝜑,𝑘,𝑛,𝑤   𝑘,𝐺,𝑛,𝑟,𝑤
Allowed substitution hints:   𝜑(𝑟)   𝐶(𝑟)   𝑆(𝑤,𝑘,𝑛)   · (𝑛,𝑟)

Proof of Theorem ablfac2
Dummy variables 𝑠 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdf 14420 . . . . . . . 8 (𝑠 ∈ Word 𝐶𝑠:(0..^(♯‘𝑠))⟶𝐶)
21ad2antlr 727 . . . . . . 7 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝑠:(0..^(♯‘𝑠))⟶𝐶)
32fdmd 6656 . . . . . 6 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → dom 𝑠 = (0..^(♯‘𝑠)))
4 fzofi 13876 . . . . . 6 (0..^(♯‘𝑠)) ∈ Fin
53, 4eqeltrdi 2839 . . . . 5 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → dom 𝑠 ∈ Fin)
62ffdmd 6676 . . . . . . . . . 10 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝑠:dom 𝑠𝐶)
76ffvelcdmda 7012 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) ∈ 𝐶)
8 oveq2 7349 . . . . . . . . . . . 12 (𝑟 = (𝑠𝑘) → (𝐺s 𝑟) = (𝐺s (𝑠𝑘)))
98eleq1d 2816 . . . . . . . . . . 11 (𝑟 = (𝑠𝑘) → ((𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔ (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp )))
10 ablfac.c . . . . . . . . . . 11 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
119, 10elrab2 3645 . . . . . . . . . 10 ((𝑠𝑘) ∈ 𝐶 ↔ ((𝑠𝑘) ∈ (SubGrp‘𝐺) ∧ (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp )))
1211simplbi 497 . . . . . . . . 9 ((𝑠𝑘) ∈ 𝐶 → (𝑠𝑘) ∈ (SubGrp‘𝐺))
137, 12syl 17 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) ∈ (SubGrp‘𝐺))
14 ablfac.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
1514subgss 19035 . . . . . . . 8 ((𝑠𝑘) ∈ (SubGrp‘𝐺) → (𝑠𝑘) ⊆ 𝐵)
1613, 15syl 17 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) ⊆ 𝐵)
1711simprbi 496 . . . . . . . . . . . 12 ((𝑠𝑘) ∈ 𝐶 → (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp ))
187, 17syl 17 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp ))
1918elin1d 4149 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝐺s (𝑠𝑘)) ∈ CycGrp)
20 eqid 2731 . . . . . . . . . . . 12 (Base‘(𝐺s (𝑠𝑘))) = (Base‘(𝐺s (𝑠𝑘)))
21 eqid 2731 . . . . . . . . . . . 12 (.g‘(𝐺s (𝑠𝑘))) = (.g‘(𝐺s (𝑠𝑘)))
2220, 21iscyg 19786 . . . . . . . . . . 11 ((𝐺s (𝑠𝑘)) ∈ CycGrp ↔ ((𝐺s (𝑠𝑘)) ∈ Grp ∧ ∃𝑥 ∈ (Base‘(𝐺s (𝑠𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘)))))
2322simprbi 496 . . . . . . . . . 10 ((𝐺s (𝑠𝑘)) ∈ CycGrp → ∃𝑥 ∈ (Base‘(𝐺s (𝑠𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘))))
2419, 23syl 17 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (Base‘(𝐺s (𝑠𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘))))
25 eqid 2731 . . . . . . . . . . 11 (𝐺s (𝑠𝑘)) = (𝐺s (𝑠𝑘))
2625subgbas 19038 . . . . . . . . . 10 ((𝑠𝑘) ∈ (SubGrp‘𝐺) → (𝑠𝑘) = (Base‘(𝐺s (𝑠𝑘))))
2713, 26syl 17 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) = (Base‘(𝐺s (𝑠𝑘))))
2824, 27rexeqtrrdv 3297 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘))))
2913ad2antrr 726 . . . . . . . . . . . . 13 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → (𝑠𝑘) ∈ (SubGrp‘𝐺))
30 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
31 simplr 768 . . . . . . . . . . . . 13 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ (𝑠𝑘))
32 ablfac2.m . . . . . . . . . . . . . 14 · = (.g𝐺)
3332, 25, 21subgmulg 19048 . . . . . . . . . . . . 13 (((𝑠𝑘) ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ (𝑠𝑘)) → (𝑛 · 𝑥) = (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥))
3429, 30, 31, 33syl3anc 1373 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑥) = (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥))
3534mpteq2dva 5179 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)))
3635rneqd 5873 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)))
3727adantr 480 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → (𝑠𝑘) = (Base‘(𝐺s (𝑠𝑘))))
3836, 37eqeq12d 2747 . . . . . . . . 9 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘)))))
3938rexbidva 3154 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) ↔ ∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘)))))
4028, 39mpbird 257 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘))
41 ssrexv 3999 . . . . . . 7 ((𝑠𝑘) ⊆ 𝐵 → (∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) → ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘)))
4216, 40, 41sylc 65 . . . . . 6 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘))
4342ralrimiva 3124 . . . . 5 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∀𝑘 ∈ dom 𝑠𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘))
44 oveq2 7349 . . . . . . . . 9 (𝑥 = (𝑤𝑘) → (𝑛 · 𝑥) = (𝑛 · (𝑤𝑘)))
4544mpteq2dv 5180 . . . . . . . 8 (𝑥 = (𝑤𝑘) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
4645rneqd 5873 . . . . . . 7 (𝑥 = (𝑤𝑘) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
4746eqeq1d 2733 . . . . . 6 (𝑥 = (𝑤𝑘) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)))
4847ac6sfi 9163 . . . . 5 ((dom 𝑠 ∈ Fin ∧ ∀𝑘 ∈ dom 𝑠𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘)) → ∃𝑤(𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)))
495, 43, 48syl2anc 584 . . . 4 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤(𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)))
50 simprl 770 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑤:dom 𝑠𝐵)
513adantr 480 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → dom 𝑠 = (0..^(♯‘𝑠)))
5251feq2d 6630 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑤:dom 𝑠𝐵𝑤:(0..^(♯‘𝑠))⟶𝐵))
5350, 52mpbid 232 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑤:(0..^(♯‘𝑠))⟶𝐵)
54 iswrdi 14419 . . . . . . . 8 (𝑤:(0..^(♯‘𝑠))⟶𝐵𝑤 ∈ Word 𝐵)
5553, 54syl 17 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑤 ∈ Word 𝐵)
5650fdmd 6656 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → dom 𝑤 = dom 𝑠)
5756eleq2d 2817 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑗 ∈ dom 𝑤𝑗 ∈ dom 𝑠))
5857biimpa 476 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑤) → 𝑗 ∈ dom 𝑠)
59 simprr 772 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))
60 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑘 = 𝑗𝑛 ∈ ℤ) → 𝑘 = 𝑗)
6160fveq2d 6821 . . . . . . . . . . . . . . . . 17 ((𝑘 = 𝑗𝑛 ∈ ℤ) → (𝑤𝑘) = (𝑤𝑗))
6261oveq2d 7357 . . . . . . . . . . . . . . . 16 ((𝑘 = 𝑗𝑛 ∈ ℤ) → (𝑛 · (𝑤𝑘)) = (𝑛 · (𝑤𝑗)))
6362mpteq2dva 5179 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
6463rneqd 5873 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
65 fveq2 6817 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑠𝑘) = (𝑠𝑗))
6664, 65eqeq12d 2747 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) = (𝑠𝑗)))
6766rspccva 3571 . . . . . . . . . . . 12 ((∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) = (𝑠𝑗))
6859, 67sylan 580 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) = (𝑠𝑗))
696adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑠:dom 𝑠𝐶)
7069ffvelcdmda 7012 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑠) → (𝑠𝑗) ∈ 𝐶)
7168, 70eqeltrd 2831 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) ∈ 𝐶)
7258, 71syldan 591 . . . . . . . . 9 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑤) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) ∈ 𝐶)
73 ablfac2.s . . . . . . . . . 10 𝑆 = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
74 fveq2 6817 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
7574oveq2d 7357 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑛 · (𝑤𝑘)) = (𝑛 · (𝑤𝑗)))
7675mpteq2dv 5180 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
7776rneqd 5873 . . . . . . . . . . 11 (𝑘 = 𝑗 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
7877cbvmptv 5190 . . . . . . . . . 10 (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘)))) = (𝑗 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
7973, 78eqtri 2754 . . . . . . . . 9 𝑆 = (𝑗 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
8072, 79fmptd 7042 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑆:dom 𝑤𝐶)
81 simprl 770 . . . . . . . . . 10 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝐺dom DProd 𝑠)
8281adantr 480 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝐺dom DProd 𝑠)
8359, 56raleqtrrdv 3296 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → ∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))
84 mpteq12 5174 . . . . . . . . . . . 12 ((dom 𝑤 = dom 𝑠 ∧ ∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)) → (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘)))) = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
8556, 83, 84syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘)))) = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
8673, 85eqtrid 2778 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑆 = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
87 dprdf 19915 . . . . . . . . . . . 12 (𝐺dom DProd 𝑠𝑠:dom 𝑠⟶(SubGrp‘𝐺))
8882, 87syl 17 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑠:dom 𝑠⟶(SubGrp‘𝐺))
8988feqmptd 6885 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑠 = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
9086, 89eqtr4d 2769 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑆 = 𝑠)
9182, 90breqtrrd 5114 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝐺dom DProd 𝑆)
9290oveq2d 7357 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝐺 DProd 𝑆) = (𝐺 DProd 𝑠))
93 simplrr 777 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝐺 DProd 𝑠) = 𝐵)
9492, 93eqtrd 2766 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝐺 DProd 𝑆) = 𝐵)
9580, 91, 943jca 1128 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
9655, 95jca 511 . . . . . 6 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))
9796ex 412 . . . . 5 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ((𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)) → (𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))))
9897eximdv 1918 . . . 4 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → (∃𝑤(𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)) → ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))))
9949, 98mpd 15 . . 3 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))
100 df-rex 3057 . . 3 (∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵) ↔ ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))
10199, 100sylibr 234 . 2 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
102 ablfac.1 . . 3 (𝜑𝐺 ∈ Abel)
103 ablfac.2 . . 3 (𝜑𝐵 ∈ Fin)
10414, 10, 102, 103ablfac 19997 . 2 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
105101, 104r19.29a 3140 1 (𝜑 → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  {crab 3395  cin 3896  wss 3897   class class class wbr 5086  cmpt 5167  dom cdm 5611  ran crn 5612  wf 6472  cfv 6476  (class class class)co 7341  Fincfn 8864  0cc0 11001  cz 12463  ..^cfzo 13549  chash 14232  Word cword 14415  Basecbs 17115  s cress 17136  Grpcgrp 18841  .gcmg 18975  SubGrpcsubg 19028   pGrp cpgp 19433  Abelcabl 19688  CycGrpccyg 19784   DProd cdprd 19902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-disj 5054  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-rpss 7651  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-xnn0 12450  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-word 14416  df-concat 14473  df-s1 14499  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-sum 15589  df-dvds 16159  df-gcd 16401  df-prm 16578  df-pc 16744  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-0g 17340  df-gsum 17341  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-eqg 19033  df-ghm 19120  df-gim 19166  df-ga 19197  df-cntz 19224  df-oppg 19253  df-od 19435  df-gex 19436  df-pgp 19437  df-lsm 19543  df-pj1 19544  df-cmn 19689  df-abl 19690  df-cyg 19785  df-dprd 19904
This theorem is referenced by:  dchrpt  27200
  Copyright terms: Public domain W3C validator