MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac2 Structured version   Visualization version   GIF version

Theorem ablfac2 20011
Description: Choose generators for each cyclic group in ablfac 20010. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
ablfac.b 𝐵 = (Base‘𝐺)
ablfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
ablfac.1 (𝜑𝐺 ∈ Abel)
ablfac.2 (𝜑𝐵 ∈ Fin)
ablfac2.m · = (.g𝐺)
ablfac2.s 𝑆 = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
Assertion
Ref Expression
ablfac2 (𝜑 → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
Distinct variable groups:   𝑆,𝑟   𝑘,𝑛,𝑟,𝑤,𝐵   · ,𝑘,𝑤   𝐶,𝑘,𝑛,𝑤   𝜑,𝑘,𝑛,𝑤   𝑘,𝐺,𝑛,𝑟,𝑤
Allowed substitution hints:   𝜑(𝑟)   𝐶(𝑟)   𝑆(𝑤,𝑘,𝑛)   · (𝑛,𝑟)

Proof of Theorem ablfac2
Dummy variables 𝑠 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdf 14432 . . . . . . . 8 (𝑠 ∈ Word 𝐶𝑠:(0..^(♯‘𝑠))⟶𝐶)
21ad2antlr 727 . . . . . . 7 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝑠:(0..^(♯‘𝑠))⟶𝐶)
32fdmd 6669 . . . . . 6 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → dom 𝑠 = (0..^(♯‘𝑠)))
4 fzofi 13888 . . . . . 6 (0..^(♯‘𝑠)) ∈ Fin
53, 4eqeltrdi 2841 . . . . 5 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → dom 𝑠 ∈ Fin)
62ffdmd 6689 . . . . . . . . . 10 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝑠:dom 𝑠𝐶)
76ffvelcdmda 7026 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) ∈ 𝐶)
8 oveq2 7363 . . . . . . . . . . . 12 (𝑟 = (𝑠𝑘) → (𝐺s 𝑟) = (𝐺s (𝑠𝑘)))
98eleq1d 2818 . . . . . . . . . . 11 (𝑟 = (𝑠𝑘) → ((𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔ (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp )))
10 ablfac.c . . . . . . . . . . 11 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
119, 10elrab2 3646 . . . . . . . . . 10 ((𝑠𝑘) ∈ 𝐶 ↔ ((𝑠𝑘) ∈ (SubGrp‘𝐺) ∧ (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp )))
1211simplbi 497 . . . . . . . . 9 ((𝑠𝑘) ∈ 𝐶 → (𝑠𝑘) ∈ (SubGrp‘𝐺))
137, 12syl 17 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) ∈ (SubGrp‘𝐺))
14 ablfac.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
1514subgss 19048 . . . . . . . 8 ((𝑠𝑘) ∈ (SubGrp‘𝐺) → (𝑠𝑘) ⊆ 𝐵)
1613, 15syl 17 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) ⊆ 𝐵)
1711simprbi 496 . . . . . . . . . . . 12 ((𝑠𝑘) ∈ 𝐶 → (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp ))
187, 17syl 17 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp ))
1918elin1d 4153 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝐺s (𝑠𝑘)) ∈ CycGrp)
20 eqid 2733 . . . . . . . . . . . 12 (Base‘(𝐺s (𝑠𝑘))) = (Base‘(𝐺s (𝑠𝑘)))
21 eqid 2733 . . . . . . . . . . . 12 (.g‘(𝐺s (𝑠𝑘))) = (.g‘(𝐺s (𝑠𝑘)))
2220, 21iscyg 19799 . . . . . . . . . . 11 ((𝐺s (𝑠𝑘)) ∈ CycGrp ↔ ((𝐺s (𝑠𝑘)) ∈ Grp ∧ ∃𝑥 ∈ (Base‘(𝐺s (𝑠𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘)))))
2322simprbi 496 . . . . . . . . . 10 ((𝐺s (𝑠𝑘)) ∈ CycGrp → ∃𝑥 ∈ (Base‘(𝐺s (𝑠𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘))))
2419, 23syl 17 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (Base‘(𝐺s (𝑠𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘))))
25 eqid 2733 . . . . . . . . . . 11 (𝐺s (𝑠𝑘)) = (𝐺s (𝑠𝑘))
2625subgbas 19051 . . . . . . . . . 10 ((𝑠𝑘) ∈ (SubGrp‘𝐺) → (𝑠𝑘) = (Base‘(𝐺s (𝑠𝑘))))
2713, 26syl 17 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) = (Base‘(𝐺s (𝑠𝑘))))
2824, 27rexeqtrrdv 3298 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘))))
2913ad2antrr 726 . . . . . . . . . . . . 13 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → (𝑠𝑘) ∈ (SubGrp‘𝐺))
30 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
31 simplr 768 . . . . . . . . . . . . 13 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ (𝑠𝑘))
32 ablfac2.m . . . . . . . . . . . . . 14 · = (.g𝐺)
3332, 25, 21subgmulg 19061 . . . . . . . . . . . . 13 (((𝑠𝑘) ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ (𝑠𝑘)) → (𝑛 · 𝑥) = (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥))
3429, 30, 31, 33syl3anc 1373 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑥) = (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥))
3534mpteq2dva 5188 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)))
3635rneqd 5884 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)))
3727adantr 480 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → (𝑠𝑘) = (Base‘(𝐺s (𝑠𝑘))))
3836, 37eqeq12d 2749 . . . . . . . . 9 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘)))))
3938rexbidva 3155 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) ↔ ∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘)))))
4028, 39mpbird 257 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘))
41 ssrexv 4000 . . . . . . 7 ((𝑠𝑘) ⊆ 𝐵 → (∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) → ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘)))
4216, 40, 41sylc 65 . . . . . 6 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘))
4342ralrimiva 3125 . . . . 5 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∀𝑘 ∈ dom 𝑠𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘))
44 oveq2 7363 . . . . . . . . 9 (𝑥 = (𝑤𝑘) → (𝑛 · 𝑥) = (𝑛 · (𝑤𝑘)))
4544mpteq2dv 5189 . . . . . . . 8 (𝑥 = (𝑤𝑘) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
4645rneqd 5884 . . . . . . 7 (𝑥 = (𝑤𝑘) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
4746eqeq1d 2735 . . . . . 6 (𝑥 = (𝑤𝑘) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)))
4847ac6sfi 9179 . . . . 5 ((dom 𝑠 ∈ Fin ∧ ∀𝑘 ∈ dom 𝑠𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘)) → ∃𝑤(𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)))
495, 43, 48syl2anc 584 . . . 4 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤(𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)))
50 simprl 770 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑤:dom 𝑠𝐵)
513adantr 480 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → dom 𝑠 = (0..^(♯‘𝑠)))
5251feq2d 6643 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑤:dom 𝑠𝐵𝑤:(0..^(♯‘𝑠))⟶𝐵))
5350, 52mpbid 232 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑤:(0..^(♯‘𝑠))⟶𝐵)
54 iswrdi 14431 . . . . . . . 8 (𝑤:(0..^(♯‘𝑠))⟶𝐵𝑤 ∈ Word 𝐵)
5553, 54syl 17 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑤 ∈ Word 𝐵)
5650fdmd 6669 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → dom 𝑤 = dom 𝑠)
5756eleq2d 2819 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑗 ∈ dom 𝑤𝑗 ∈ dom 𝑠))
5857biimpa 476 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑤) → 𝑗 ∈ dom 𝑠)
59 simprr 772 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))
60 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑘 = 𝑗𝑛 ∈ ℤ) → 𝑘 = 𝑗)
6160fveq2d 6835 . . . . . . . . . . . . . . . . 17 ((𝑘 = 𝑗𝑛 ∈ ℤ) → (𝑤𝑘) = (𝑤𝑗))
6261oveq2d 7371 . . . . . . . . . . . . . . . 16 ((𝑘 = 𝑗𝑛 ∈ ℤ) → (𝑛 · (𝑤𝑘)) = (𝑛 · (𝑤𝑗)))
6362mpteq2dva 5188 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
6463rneqd 5884 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
65 fveq2 6831 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑠𝑘) = (𝑠𝑗))
6664, 65eqeq12d 2749 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) = (𝑠𝑗)))
6766rspccva 3572 . . . . . . . . . . . 12 ((∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) = (𝑠𝑗))
6859, 67sylan 580 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) = (𝑠𝑗))
696adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑠:dom 𝑠𝐶)
7069ffvelcdmda 7026 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑠) → (𝑠𝑗) ∈ 𝐶)
7168, 70eqeltrd 2833 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) ∈ 𝐶)
7258, 71syldan 591 . . . . . . . . 9 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑤) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) ∈ 𝐶)
73 ablfac2.s . . . . . . . . . 10 𝑆 = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
74 fveq2 6831 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
7574oveq2d 7371 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑛 · (𝑤𝑘)) = (𝑛 · (𝑤𝑗)))
7675mpteq2dv 5189 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
7776rneqd 5884 . . . . . . . . . . 11 (𝑘 = 𝑗 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
7877cbvmptv 5199 . . . . . . . . . 10 (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘)))) = (𝑗 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
7973, 78eqtri 2756 . . . . . . . . 9 𝑆 = (𝑗 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
8072, 79fmptd 7056 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑆:dom 𝑤𝐶)
81 simprl 770 . . . . . . . . . 10 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝐺dom DProd 𝑠)
8281adantr 480 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝐺dom DProd 𝑠)
8359, 56raleqtrrdv 3297 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → ∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))
84 mpteq12 5183 . . . . . . . . . . . 12 ((dom 𝑤 = dom 𝑠 ∧ ∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)) → (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘)))) = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
8556, 83, 84syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘)))) = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
8673, 85eqtrid 2780 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑆 = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
87 dprdf 19928 . . . . . . . . . . . 12 (𝐺dom DProd 𝑠𝑠:dom 𝑠⟶(SubGrp‘𝐺))
8882, 87syl 17 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑠:dom 𝑠⟶(SubGrp‘𝐺))
8988feqmptd 6899 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑠 = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
9086, 89eqtr4d 2771 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑆 = 𝑠)
9182, 90breqtrrd 5123 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝐺dom DProd 𝑆)
9290oveq2d 7371 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝐺 DProd 𝑆) = (𝐺 DProd 𝑠))
93 simplrr 777 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝐺 DProd 𝑠) = 𝐵)
9492, 93eqtrd 2768 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝐺 DProd 𝑆) = 𝐵)
9580, 91, 943jca 1128 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
9655, 95jca 511 . . . . . 6 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))
9796ex 412 . . . . 5 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ((𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)) → (𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))))
9897eximdv 1918 . . . 4 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → (∃𝑤(𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)) → ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))))
9949, 98mpd 15 . . 3 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))
100 df-rex 3058 . . 3 (∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵) ↔ ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))
10199, 100sylibr 234 . 2 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
102 ablfac.1 . . 3 (𝜑𝐺 ∈ Abel)
103 ablfac.2 . . 3 (𝜑𝐵 ∈ Fin)
10414, 10, 102, 103ablfac 20010 . 2 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
105101, 104r19.29a 3141 1 (𝜑 → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wral 3048  wrex 3057  {crab 3396  cin 3897  wss 3898   class class class wbr 5095  cmpt 5176  dom cdm 5621  ran crn 5622  wf 6485  cfv 6489  (class class class)co 7355  Fincfn 8879  0cc0 11017  cz 12479  ..^cfzo 13561  chash 14244  Word cword 14427  Basecbs 17127  s cress 17148  Grpcgrp 18854  .gcmg 18988  SubGrpcsubg 19041   pGrp cpgp 19446  Abelcabl 19701  CycGrpccyg 19797   DProd cdprd 19915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-rpss 7665  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-ec 8633  df-qs 8637  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-acn 9846  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-word 14428  df-concat 14485  df-s1 14511  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-sum 15601  df-dvds 16171  df-gcd 16413  df-prm 16590  df-pc 16756  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-0g 17352  df-gsum 17353  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-eqg 19046  df-ghm 19133  df-gim 19179  df-ga 19210  df-cntz 19237  df-oppg 19266  df-od 19448  df-gex 19449  df-pgp 19450  df-lsm 19556  df-pj1 19557  df-cmn 19702  df-abl 19703  df-cyg 19798  df-dprd 19917
This theorem is referenced by:  dchrpt  27225
  Copyright terms: Public domain W3C validator