Step | Hyp | Ref
| Expression |
1 | | wrdf 14567 |
. . . . . . . 8
⊢ (𝑠 ∈ Word 𝐶 → 𝑠:(0..^(♯‘𝑠))⟶𝐶) |
2 | 1 | ad2antlr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝑠:(0..^(♯‘𝑠))⟶𝐶) |
3 | 2 | fdmd 6757 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → dom 𝑠 = (0..^(♯‘𝑠))) |
4 | | fzofi 14025 |
. . . . . 6
⊢
(0..^(♯‘𝑠)) ∈ Fin |
5 | 3, 4 | eqeltrdi 2852 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → dom 𝑠 ∈ Fin) |
6 | 2 | ffdmd 6778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝑠:dom 𝑠⟶𝐶) |
7 | 6 | ffvelcdmda 7118 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠‘𝑘) ∈ 𝐶) |
8 | | oveq2 7456 |
. . . . . . . . . . . 12
⊢ (𝑟 = (𝑠‘𝑘) → (𝐺 ↾s 𝑟) = (𝐺 ↾s (𝑠‘𝑘))) |
9 | 8 | eleq1d 2829 |
. . . . . . . . . . 11
⊢ (𝑟 = (𝑠‘𝑘) → ((𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔
(𝐺 ↾s
(𝑠‘𝑘)) ∈ (CycGrp ∩ ran pGrp
))) |
10 | | ablfac.c |
. . . . . . . . . . 11
⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp
)} |
11 | 9, 10 | elrab2 3711 |
. . . . . . . . . 10
⊢ ((𝑠‘𝑘) ∈ 𝐶 ↔ ((𝑠‘𝑘) ∈ (SubGrp‘𝐺) ∧ (𝐺 ↾s (𝑠‘𝑘)) ∈ (CycGrp ∩ ran pGrp
))) |
12 | 11 | simplbi 497 |
. . . . . . . . 9
⊢ ((𝑠‘𝑘) ∈ 𝐶 → (𝑠‘𝑘) ∈ (SubGrp‘𝐺)) |
13 | 7, 12 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠‘𝑘) ∈ (SubGrp‘𝐺)) |
14 | | ablfac.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
15 | 14 | subgss 19167 |
. . . . . . . 8
⊢ ((𝑠‘𝑘) ∈ (SubGrp‘𝐺) → (𝑠‘𝑘) ⊆ 𝐵) |
16 | 13, 15 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠‘𝑘) ⊆ 𝐵) |
17 | 11 | simprbi 496 |
. . . . . . . . . . . 12
⊢ ((𝑠‘𝑘) ∈ 𝐶 → (𝐺 ↾s (𝑠‘𝑘)) ∈ (CycGrp ∩ ran pGrp
)) |
18 | 7, 17 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝐺 ↾s (𝑠‘𝑘)) ∈ (CycGrp ∩ ran pGrp
)) |
19 | 18 | elin1d 4227 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝐺 ↾s (𝑠‘𝑘)) ∈ CycGrp) |
20 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(Base‘(𝐺
↾s (𝑠‘𝑘))) = (Base‘(𝐺 ↾s (𝑠‘𝑘))) |
21 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(.g‘(𝐺 ↾s (𝑠‘𝑘))) = (.g‘(𝐺 ↾s (𝑠‘𝑘))) |
22 | 20, 21 | iscyg 19921 |
. . . . . . . . . . 11
⊢ ((𝐺 ↾s (𝑠‘𝑘)) ∈ CycGrp ↔ ((𝐺 ↾s (𝑠‘𝑘)) ∈ Grp ∧ ∃𝑥 ∈ (Base‘(𝐺 ↾s (𝑠‘𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘))))) |
23 | 22 | simprbi 496 |
. . . . . . . . . 10
⊢ ((𝐺 ↾s (𝑠‘𝑘)) ∈ CycGrp → ∃𝑥 ∈ (Base‘(𝐺 ↾s (𝑠‘𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
24 | 19, 23 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (Base‘(𝐺 ↾s (𝑠‘𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
25 | | eqid 2740 |
. . . . . . . . . . 11
⊢ (𝐺 ↾s (𝑠‘𝑘)) = (𝐺 ↾s (𝑠‘𝑘)) |
26 | 25 | subgbas 19170 |
. . . . . . . . . 10
⊢ ((𝑠‘𝑘) ∈ (SubGrp‘𝐺) → (𝑠‘𝑘) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
27 | 13, 26 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠‘𝑘) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
28 | 24, 27 | rexeqtrrdv 3339 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
29 | 13 | ad2antrr 725 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) ∧ 𝑛 ∈ ℤ) → (𝑠‘𝑘) ∈ (SubGrp‘𝐺)) |
30 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) |
31 | | simplr 768 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ (𝑠‘𝑘)) |
32 | | ablfac2.m |
. . . . . . . . . . . . . 14
⊢ · =
(.g‘𝐺) |
33 | 32, 25, 21 | subgmulg 19180 |
. . . . . . . . . . . . 13
⊢ (((𝑠‘𝑘) ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ (𝑠‘𝑘)) → (𝑛 · 𝑥) = (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) |
34 | 29, 30, 31, 33 | syl3anc 1371 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑥) = (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) |
35 | 34 | mpteq2dva 5266 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥))) |
36 | 35 | rneqd 5963 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥))) |
37 | 27 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) → (𝑠‘𝑘) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
38 | 36, 37 | eqeq12d 2756 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘))))) |
39 | 38 | rexbidva 3183 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘) ↔ ∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘))))) |
40 | 28, 39 | mpbird 257 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘)) |
41 | | ssrexv 4078 |
. . . . . . 7
⊢ ((𝑠‘𝑘) ⊆ 𝐵 → (∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘) → ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘))) |
42 | 16, 40, 41 | sylc 65 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘)) |
43 | 42 | ralrimiva 3152 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∀𝑘 ∈ dom 𝑠∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘)) |
44 | | oveq2 7456 |
. . . . . . . . 9
⊢ (𝑥 = (𝑤‘𝑘) → (𝑛 · 𝑥) = (𝑛 · (𝑤‘𝑘))) |
45 | 44 | mpteq2dv 5268 |
. . . . . . . 8
⊢ (𝑥 = (𝑤‘𝑘) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) |
46 | 45 | rneqd 5963 |
. . . . . . 7
⊢ (𝑥 = (𝑤‘𝑘) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) |
47 | 46 | eqeq1d 2742 |
. . . . . 6
⊢ (𝑥 = (𝑤‘𝑘) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) |
48 | 47 | ac6sfi 9348 |
. . . . 5
⊢ ((dom
𝑠 ∈ Fin ∧
∀𝑘 ∈ dom 𝑠∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘)) → ∃𝑤(𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) |
49 | 5, 43, 48 | syl2anc 583 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤(𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) |
50 | | simprl 770 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑤:dom 𝑠⟶𝐵) |
51 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → dom 𝑠 = (0..^(♯‘𝑠))) |
52 | 51 | feq2d 6733 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑤:dom 𝑠⟶𝐵 ↔ 𝑤:(0..^(♯‘𝑠))⟶𝐵)) |
53 | 50, 52 | mpbid 232 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑤:(0..^(♯‘𝑠))⟶𝐵) |
54 | | iswrdi 14566 |
. . . . . . . 8
⊢ (𝑤:(0..^(♯‘𝑠))⟶𝐵 → 𝑤 ∈ Word 𝐵) |
55 | 53, 54 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑤 ∈ Word 𝐵) |
56 | 50 | fdmd 6757 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → dom 𝑤 = dom 𝑠) |
57 | 56 | eleq2d 2830 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑗 ∈ dom 𝑤 ↔ 𝑗 ∈ dom 𝑠)) |
58 | 57 | biimpa 476 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑤) → 𝑗 ∈ dom 𝑠) |
59 | | simprr 772 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) |
60 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 = 𝑗 ∧ 𝑛 ∈ ℤ) → 𝑘 = 𝑗) |
61 | 60 | fveq2d 6924 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 = 𝑗 ∧ 𝑛 ∈ ℤ) → (𝑤‘𝑘) = (𝑤‘𝑗)) |
62 | 61 | oveq2d 7464 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 = 𝑗 ∧ 𝑛 ∈ ℤ) → (𝑛 · (𝑤‘𝑘)) = (𝑛 · (𝑤‘𝑗))) |
63 | 62 | mpteq2dva 5266 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
64 | 63 | rneqd 5963 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
65 | | fveq2 6920 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝑠‘𝑘) = (𝑠‘𝑗)) |
66 | 64, 65 | eqeq12d 2756 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) = (𝑠‘𝑗))) |
67 | 66 | rspccva 3634 |
. . . . . . . . . . . 12
⊢
((∀𝑘 ∈
dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) = (𝑠‘𝑗)) |
68 | 59, 67 | sylan 579 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) = (𝑠‘𝑗)) |
69 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑠:dom 𝑠⟶𝐶) |
70 | 69 | ffvelcdmda 7118 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑠) → (𝑠‘𝑗) ∈ 𝐶) |
71 | 68, 70 | eqeltrd 2844 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) ∈ 𝐶) |
72 | 58, 71 | syldan 590 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑤) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) ∈ 𝐶) |
73 | | ablfac2.s |
. . . . . . . . . 10
⊢ 𝑆 = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) |
74 | | fveq2 6920 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝑤‘𝑘) = (𝑤‘𝑗)) |
75 | 74 | oveq2d 7464 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑛 · (𝑤‘𝑘)) = (𝑛 · (𝑤‘𝑗))) |
76 | 75 | mpteq2dv 5268 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
77 | 76 | rneqd 5963 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
78 | 77 | cbvmptv 5279 |
. . . . . . . . . 10
⊢ (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) = (𝑗 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
79 | 73, 78 | eqtri 2768 |
. . . . . . . . 9
⊢ 𝑆 = (𝑗 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
80 | 72, 79 | fmptd 7148 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑆:dom 𝑤⟶𝐶) |
81 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝐺dom DProd 𝑠) |
82 | 81 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝐺dom DProd 𝑠) |
83 | 59, 56 | raleqtrrdv 3338 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → ∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) |
84 | | mpteq12 5258 |
. . . . . . . . . . . 12
⊢ ((dom
𝑤 = dom 𝑠 ∧ ∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) → (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) = (𝑘 ∈ dom 𝑠 ↦ (𝑠‘𝑘))) |
85 | 56, 83, 84 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) = (𝑘 ∈ dom 𝑠 ↦ (𝑠‘𝑘))) |
86 | 73, 85 | eqtrid 2792 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑆 = (𝑘 ∈ dom 𝑠 ↦ (𝑠‘𝑘))) |
87 | | dprdf 20050 |
. . . . . . . . . . . 12
⊢ (𝐺dom DProd 𝑠 → 𝑠:dom 𝑠⟶(SubGrp‘𝐺)) |
88 | 82, 87 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑠:dom 𝑠⟶(SubGrp‘𝐺)) |
89 | 88 | feqmptd 6990 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑠 = (𝑘 ∈ dom 𝑠 ↦ (𝑠‘𝑘))) |
90 | 86, 89 | eqtr4d 2783 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑆 = 𝑠) |
91 | 82, 90 | breqtrrd 5194 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝐺dom DProd 𝑆) |
92 | 90 | oveq2d 7464 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝐺 DProd 𝑆) = (𝐺 DProd 𝑠)) |
93 | | simplrr 777 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝐺 DProd 𝑠) = 𝐵) |
94 | 92, 93 | eqtrd 2780 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝐺 DProd 𝑆) = 𝐵) |
95 | 80, 91, 94 | 3jca 1128 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)) |
96 | 55, 95 | jca 511 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))) |
97 | 96 | ex 412 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ((𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) → (𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))) |
98 | 97 | eximdv 1916 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → (∃𝑤(𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) → ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))) |
99 | 49, 98 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))) |
100 | | df-rex 3077 |
. . 3
⊢
(∃𝑤 ∈
Word 𝐵(𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵) ↔ ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))) |
101 | 99, 100 | sylibr 234 |
. 2
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)) |
102 | | ablfac.1 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Abel) |
103 | | ablfac.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
104 | 14, 10, 102, 103 | ablfac 20132 |
. 2
⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) |
105 | 101, 104 | r19.29a 3168 |
1
⊢ (𝜑 → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)) |