Step | Hyp | Ref
| Expression |
1 | | wrdf 14222 |
. . . . . . . 8
⊢ (𝑠 ∈ Word 𝐶 → 𝑠:(0..^(♯‘𝑠))⟶𝐶) |
2 | 1 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝑠:(0..^(♯‘𝑠))⟶𝐶) |
3 | 2 | fdmd 6611 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → dom 𝑠 = (0..^(♯‘𝑠))) |
4 | | fzofi 13694 |
. . . . . 6
⊢
(0..^(♯‘𝑠)) ∈ Fin |
5 | 3, 4 | eqeltrdi 2847 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → dom 𝑠 ∈ Fin) |
6 | 2 | ffdmd 6631 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝑠:dom 𝑠⟶𝐶) |
7 | 6 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠‘𝑘) ∈ 𝐶) |
8 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑟 = (𝑠‘𝑘) → (𝐺 ↾s 𝑟) = (𝐺 ↾s (𝑠‘𝑘))) |
9 | 8 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑟 = (𝑠‘𝑘) → ((𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔
(𝐺 ↾s
(𝑠‘𝑘)) ∈ (CycGrp ∩ ran pGrp
))) |
10 | | ablfac.c |
. . . . . . . . . . 11
⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp
)} |
11 | 9, 10 | elrab2 3627 |
. . . . . . . . . 10
⊢ ((𝑠‘𝑘) ∈ 𝐶 ↔ ((𝑠‘𝑘) ∈ (SubGrp‘𝐺) ∧ (𝐺 ↾s (𝑠‘𝑘)) ∈ (CycGrp ∩ ran pGrp
))) |
12 | 11 | simplbi 498 |
. . . . . . . . 9
⊢ ((𝑠‘𝑘) ∈ 𝐶 → (𝑠‘𝑘) ∈ (SubGrp‘𝐺)) |
13 | 7, 12 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠‘𝑘) ∈ (SubGrp‘𝐺)) |
14 | | ablfac.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
15 | 14 | subgss 18756 |
. . . . . . . 8
⊢ ((𝑠‘𝑘) ∈ (SubGrp‘𝐺) → (𝑠‘𝑘) ⊆ 𝐵) |
16 | 13, 15 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠‘𝑘) ⊆ 𝐵) |
17 | 11 | simprbi 497 |
. . . . . . . . . . . 12
⊢ ((𝑠‘𝑘) ∈ 𝐶 → (𝐺 ↾s (𝑠‘𝑘)) ∈ (CycGrp ∩ ran pGrp
)) |
18 | 7, 17 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝐺 ↾s (𝑠‘𝑘)) ∈ (CycGrp ∩ ran pGrp
)) |
19 | 18 | elin1d 4132 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝐺 ↾s (𝑠‘𝑘)) ∈ CycGrp) |
20 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘(𝐺
↾s (𝑠‘𝑘))) = (Base‘(𝐺 ↾s (𝑠‘𝑘))) |
21 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(.g‘(𝐺 ↾s (𝑠‘𝑘))) = (.g‘(𝐺 ↾s (𝑠‘𝑘))) |
22 | 20, 21 | iscyg 19479 |
. . . . . . . . . . 11
⊢ ((𝐺 ↾s (𝑠‘𝑘)) ∈ CycGrp ↔ ((𝐺 ↾s (𝑠‘𝑘)) ∈ Grp ∧ ∃𝑥 ∈ (Base‘(𝐺 ↾s (𝑠‘𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘))))) |
23 | 22 | simprbi 497 |
. . . . . . . . . 10
⊢ ((𝐺 ↾s (𝑠‘𝑘)) ∈ CycGrp → ∃𝑥 ∈ (Base‘(𝐺 ↾s (𝑠‘𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
24 | 19, 23 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (Base‘(𝐺 ↾s (𝑠‘𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
25 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝐺 ↾s (𝑠‘𝑘)) = (𝐺 ↾s (𝑠‘𝑘)) |
26 | 25 | subgbas 18759 |
. . . . . . . . . . 11
⊢ ((𝑠‘𝑘) ∈ (SubGrp‘𝐺) → (𝑠‘𝑘) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
27 | 13, 26 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠‘𝑘) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
28 | 27 | rexeqdv 3349 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘))) ↔ ∃𝑥 ∈ (Base‘(𝐺 ↾s (𝑠‘𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘))))) |
29 | 24, 28 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
30 | 13 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) ∧ 𝑛 ∈ ℤ) → (𝑠‘𝑘) ∈ (SubGrp‘𝐺)) |
31 | | simpr 485 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) |
32 | | simplr 766 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ (𝑠‘𝑘)) |
33 | | ablfac2.m |
. . . . . . . . . . . . . 14
⊢ · =
(.g‘𝐺) |
34 | 33, 25, 21 | subgmulg 18769 |
. . . . . . . . . . . . 13
⊢ (((𝑠‘𝑘) ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ (𝑠‘𝑘)) → (𝑛 · 𝑥) = (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) |
35 | 30, 31, 32, 34 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑥) = (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) |
36 | 35 | mpteq2dva 5174 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥))) |
37 | 36 | rneqd 5847 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥))) |
38 | 27 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) → (𝑠‘𝑘) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
39 | 37, 38 | eqeq12d 2754 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘))))) |
40 | 39 | rexbidva 3225 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘) ↔ ∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘))))) |
41 | 29, 40 | mpbird 256 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘)) |
42 | | ssrexv 3988 |
. . . . . . 7
⊢ ((𝑠‘𝑘) ⊆ 𝐵 → (∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘) → ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘))) |
43 | 16, 41, 42 | sylc 65 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘)) |
44 | 43 | ralrimiva 3103 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∀𝑘 ∈ dom 𝑠∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘)) |
45 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = (𝑤‘𝑘) → (𝑛 · 𝑥) = (𝑛 · (𝑤‘𝑘))) |
46 | 45 | mpteq2dv 5176 |
. . . . . . . 8
⊢ (𝑥 = (𝑤‘𝑘) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) |
47 | 46 | rneqd 5847 |
. . . . . . 7
⊢ (𝑥 = (𝑤‘𝑘) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) |
48 | 47 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑥 = (𝑤‘𝑘) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) |
49 | 48 | ac6sfi 9058 |
. . . . 5
⊢ ((dom
𝑠 ∈ Fin ∧
∀𝑘 ∈ dom 𝑠∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘)) → ∃𝑤(𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) |
50 | 5, 44, 49 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤(𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) |
51 | | simprl 768 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑤:dom 𝑠⟶𝐵) |
52 | 3 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → dom 𝑠 = (0..^(♯‘𝑠))) |
53 | 52 | feq2d 6586 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑤:dom 𝑠⟶𝐵 ↔ 𝑤:(0..^(♯‘𝑠))⟶𝐵)) |
54 | 51, 53 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑤:(0..^(♯‘𝑠))⟶𝐵) |
55 | | iswrdi 14221 |
. . . . . . . 8
⊢ (𝑤:(0..^(♯‘𝑠))⟶𝐵 → 𝑤 ∈ Word 𝐵) |
56 | 54, 55 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑤 ∈ Word 𝐵) |
57 | 51 | fdmd 6611 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → dom 𝑤 = dom 𝑠) |
58 | 57 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑗 ∈ dom 𝑤 ↔ 𝑗 ∈ dom 𝑠)) |
59 | 58 | biimpa 477 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑤) → 𝑗 ∈ dom 𝑠) |
60 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) |
61 | | simpl 483 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 = 𝑗 ∧ 𝑛 ∈ ℤ) → 𝑘 = 𝑗) |
62 | 61 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 = 𝑗 ∧ 𝑛 ∈ ℤ) → (𝑤‘𝑘) = (𝑤‘𝑗)) |
63 | 62 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 = 𝑗 ∧ 𝑛 ∈ ℤ) → (𝑛 · (𝑤‘𝑘)) = (𝑛 · (𝑤‘𝑗))) |
64 | 63 | mpteq2dva 5174 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
65 | 64 | rneqd 5847 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
66 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝑠‘𝑘) = (𝑠‘𝑗)) |
67 | 65, 66 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) = (𝑠‘𝑗))) |
68 | 67 | rspccva 3560 |
. . . . . . . . . . . 12
⊢
((∀𝑘 ∈
dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) = (𝑠‘𝑗)) |
69 | 60, 68 | sylan 580 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) = (𝑠‘𝑗)) |
70 | 6 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑠:dom 𝑠⟶𝐶) |
71 | 70 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑠) → (𝑠‘𝑗) ∈ 𝐶) |
72 | 69, 71 | eqeltrd 2839 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) ∈ 𝐶) |
73 | 59, 72 | syldan 591 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑤) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) ∈ 𝐶) |
74 | | ablfac2.s |
. . . . . . . . . 10
⊢ 𝑆 = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) |
75 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝑤‘𝑘) = (𝑤‘𝑗)) |
76 | 75 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑛 · (𝑤‘𝑘)) = (𝑛 · (𝑤‘𝑗))) |
77 | 76 | mpteq2dv 5176 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
78 | 77 | rneqd 5847 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
79 | 78 | cbvmptv 5187 |
. . . . . . . . . 10
⊢ (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) = (𝑗 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
80 | 74, 79 | eqtri 2766 |
. . . . . . . . 9
⊢ 𝑆 = (𝑗 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
81 | 73, 80 | fmptd 6988 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑆:dom 𝑤⟶𝐶) |
82 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝐺dom DProd 𝑠) |
83 | 82 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝐺dom DProd 𝑠) |
84 | 57 | raleqdv 3348 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘) ↔ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) |
85 | 60, 84 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → ∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) |
86 | | mpteq12 5166 |
. . . . . . . . . . . 12
⊢ ((dom
𝑤 = dom 𝑠 ∧ ∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) → (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) = (𝑘 ∈ dom 𝑠 ↦ (𝑠‘𝑘))) |
87 | 57, 85, 86 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) = (𝑘 ∈ dom 𝑠 ↦ (𝑠‘𝑘))) |
88 | 74, 87 | eqtrid 2790 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑆 = (𝑘 ∈ dom 𝑠 ↦ (𝑠‘𝑘))) |
89 | | dprdf 19609 |
. . . . . . . . . . . 12
⊢ (𝐺dom DProd 𝑠 → 𝑠:dom 𝑠⟶(SubGrp‘𝐺)) |
90 | 83, 89 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑠:dom 𝑠⟶(SubGrp‘𝐺)) |
91 | 90 | feqmptd 6837 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑠 = (𝑘 ∈ dom 𝑠 ↦ (𝑠‘𝑘))) |
92 | 88, 91 | eqtr4d 2781 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑆 = 𝑠) |
93 | 83, 92 | breqtrrd 5102 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝐺dom DProd 𝑆) |
94 | 92 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝐺 DProd 𝑆) = (𝐺 DProd 𝑠)) |
95 | | simplrr 775 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝐺 DProd 𝑠) = 𝐵) |
96 | 94, 95 | eqtrd 2778 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝐺 DProd 𝑆) = 𝐵) |
97 | 81, 93, 96 | 3jca 1127 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)) |
98 | 56, 97 | jca 512 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))) |
99 | 98 | ex 413 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ((𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) → (𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))) |
100 | 99 | eximdv 1920 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → (∃𝑤(𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) → ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))) |
101 | 50, 100 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))) |
102 | | df-rex 3070 |
. . 3
⊢
(∃𝑤 ∈
Word 𝐵(𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵) ↔ ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))) |
103 | 101, 102 | sylibr 233 |
. 2
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)) |
104 | | ablfac.1 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Abel) |
105 | | ablfac.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
106 | 14, 10, 104, 105 | ablfac 19691 |
. 2
⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) |
107 | 103, 106 | r19.29a 3218 |
1
⊢ (𝜑 → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)) |