MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexraleqim Structured version   Visualization version   GIF version

Theorem rexraleqim 3601
Description: Statement following from existence and generalization with equality. (Contributed by AV, 9-Feb-2019.)
Hypotheses
Ref Expression
rexraleqim.1 (𝑥 = 𝑧 → (𝜓𝜑))
rexraleqim.2 (𝑧 = 𝑌 → (𝜑𝜃))
Assertion
Ref Expression
rexraleqim ((∃𝑧𝐴 𝜑 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑌)) → 𝜃)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝑌,𝑧   𝜑,𝑥   𝜓,𝑧   𝜃,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥)   𝜃(𝑥)

Proof of Theorem rexraleqim
StepHypRef Expression
1 rexraleqim.1 . . . . . . 7 (𝑥 = 𝑧 → (𝜓𝜑))
2 eqeq1 2737 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑌𝑧 = 𝑌))
31, 2imbi12d 345 . . . . . 6 (𝑥 = 𝑧 → ((𝜓𝑥 = 𝑌) ↔ (𝜑𝑧 = 𝑌)))
43rspcva 3581 . . . . 5 ((𝑧𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑌)) → (𝜑𝑧 = 𝑌))
5 rexraleqim.2 . . . . . 6 (𝑧 = 𝑌 → (𝜑𝜃))
65biimpd 228 . . . . 5 (𝑧 = 𝑌 → (𝜑𝜃))
74, 6syli 39 . . . 4 ((𝑧𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑌)) → (𝜑𝜃))
87impancom 453 . . 3 ((𝑧𝐴𝜑) → (∀𝑥𝐴 (𝜓𝑥 = 𝑌) → 𝜃))
98rexlimiva 3141 . 2 (∃𝑧𝐴 𝜑 → (∀𝑥𝐴 (𝜓𝑥 = 𝑌) → 𝜃))
109imp 408 1 ((∃𝑧𝐴 𝜑 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑌)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3061  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071
This theorem is referenced by:  cramerlem3  22061
  Copyright terms: Public domain W3C validator