| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexraleqim | Structured version Visualization version GIF version | ||
| Description: Statement following from existence and generalization with equality. (Contributed by AV, 9-Feb-2019.) |
| Ref | Expression |
|---|---|
| rexraleqim.1 | ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜑)) |
| rexraleqim.2 | ⊢ (𝑧 = 𝑌 → (𝜑 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| rexraleqim | ⊢ ((∃𝑧 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑌)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexraleqim.1 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜑)) | |
| 2 | eqeq1 2734 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝑌 ↔ 𝑧 = 𝑌)) | |
| 3 | 1, 2 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝜓 → 𝑥 = 𝑌) ↔ (𝜑 → 𝑧 = 𝑌))) |
| 4 | 3 | rspcva 3589 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑌)) → (𝜑 → 𝑧 = 𝑌)) |
| 5 | rexraleqim.2 | . . . . . 6 ⊢ (𝑧 = 𝑌 → (𝜑 ↔ 𝜃)) | |
| 6 | 5 | biimpd 229 | . . . . 5 ⊢ (𝑧 = 𝑌 → (𝜑 → 𝜃)) |
| 7 | 4, 6 | syli 39 | . . . 4 ⊢ ((𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑌)) → (𝜑 → 𝜃)) |
| 8 | 7 | impancom 451 | . . 3 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝜑) → (∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑌) → 𝜃)) |
| 9 | 8 | rexlimiva 3127 | . 2 ⊢ (∃𝑧 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑌) → 𝜃)) |
| 10 | 9 | imp 406 | 1 ⊢ ((∃𝑧 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑌)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: cramerlem3 22582 |
| Copyright terms: Public domain | W3C validator |