Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexraleqim | Structured version Visualization version GIF version |
Description: Statement following from existence and generalization with equality. (Contributed by AV, 9-Feb-2019.) |
Ref | Expression |
---|---|
rexraleqim.1 | ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜑)) |
rexraleqim.2 | ⊢ (𝑧 = 𝑌 → (𝜑 ↔ 𝜃)) |
Ref | Expression |
---|---|
rexraleqim | ⊢ ((∃𝑧 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑌)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexraleqim.1 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜑)) | |
2 | eqeq1 2742 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝑌 ↔ 𝑧 = 𝑌)) | |
3 | 1, 2 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝜓 → 𝑥 = 𝑌) ↔ (𝜑 → 𝑧 = 𝑌))) |
4 | 3 | rspcva 3550 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑌)) → (𝜑 → 𝑧 = 𝑌)) |
5 | rexraleqim.2 | . . . . . 6 ⊢ (𝑧 = 𝑌 → (𝜑 ↔ 𝜃)) | |
6 | 5 | biimpd 228 | . . . . 5 ⊢ (𝑧 = 𝑌 → (𝜑 → 𝜃)) |
7 | 4, 6 | syli 39 | . . . 4 ⊢ ((𝑧 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑌)) → (𝜑 → 𝜃)) |
8 | 7 | impancom 451 | . . 3 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝜑) → (∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑌) → 𝜃)) |
9 | 8 | rexlimiva 3209 | . 2 ⊢ (∃𝑧 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑌) → 𝜃)) |
10 | 9 | imp 406 | 1 ⊢ ((∃𝑧 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑌)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 |
This theorem is referenced by: cramerlem3 21746 |
Copyright terms: Public domain | W3C validator |