MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerlem3 Structured version   Visualization version   GIF version

Theorem cramerlem3 21849
Description: Lemma 3 for cramer 21851. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramer.a 𝐴 = (𝑁 Mat 𝑅)
cramer.b 𝐵 = (Base‘𝐴)
cramer.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramer.d 𝐷 = (𝑁 maDet 𝑅)
cramer.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramer.q / = (/r𝑅)
Assertion
Ref Expression
cramerlem3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
Distinct variable groups:   𝐵,𝑖   𝐷,𝑖   𝑖,𝑁   𝑅,𝑖   𝑖,𝑉   𝑖,𝑋   𝑖,𝑌   𝑖,𝑍   · ,𝑖   / ,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem cramerlem3
Dummy variables 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cramer.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 cramer.b . . 3 𝐵 = (Base‘𝐴)
3 cramer.v . . 3 𝑉 = ((Base‘𝑅) ↑m 𝑁)
4 cramer.x . . 3 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
5 cramer.d . . 3 𝐷 = (𝑁 maDet 𝑅)
61, 2, 3, 4, 5slesolex 21842 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ∃𝑣𝑉 (𝑋 · 𝑣) = 𝑌)
7 cramer.q . . . . 5 / = (/r𝑅)
81, 2, 3, 5, 4, 7cramerlem2 21848 . . . 4 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ∀𝑧𝑉 ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
983adant1l 1175 . . 3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ∀𝑧𝑉 ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
10 oveq2 7280 . . . . . . . 8 (𝑧 = 𝑣 → (𝑋 · 𝑧) = (𝑋 · 𝑣))
1110eqeq1d 2742 . . . . . . 7 (𝑧 = 𝑣 → ((𝑋 · 𝑧) = 𝑌 ↔ (𝑋 · 𝑣) = 𝑌))
12 oveq2 7280 . . . . . . . 8 (𝑣 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑣) = (𝑋 · (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
1312eqeq1d 2742 . . . . . . 7 (𝑣 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → ((𝑋 · 𝑣) = 𝑌 ↔ (𝑋 · (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))) = 𝑌))
1411, 13rexraleqim 3578 . . . . . 6 ((∃𝑣𝑉 (𝑋 · 𝑣) = 𝑌 ∧ ∀𝑧𝑉 ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))) → (𝑋 · (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))) = 𝑌)
15 oveq2 7280 . . . . . . . . . 10 (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = (𝑋 · (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
1615adantl 482 . . . . . . . . 9 (((𝑋 · (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))) = 𝑌𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))) → (𝑋 · 𝑍) = (𝑋 · (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
17 simpl 483 . . . . . . . . 9 (((𝑋 · (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))) = 𝑌𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))) → (𝑋 · (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))) = 𝑌)
1816, 17eqtrd 2780 . . . . . . . 8 (((𝑋 · (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))) = 𝑌𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))) → (𝑋 · 𝑍) = 𝑌)
1918ex 413 . . . . . . 7 ((𝑋 · (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))) = 𝑌 → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
2019a1d 25 . . . . . 6 ((𝑋 · (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))) = 𝑌 → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌)))
2114, 20syl 17 . . . . 5 ((∃𝑣𝑉 (𝑋 · 𝑣) = 𝑌 ∧ ∀𝑧𝑉 ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))) → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌)))
2221expcom 414 . . . 4 (∀𝑧𝑉 ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))) → (∃𝑣𝑉 (𝑋 · 𝑣) = 𝑌 → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
2322com23 86 . . 3 (∀𝑧𝑉 ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))) → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (∃𝑣𝑉 (𝑋 · 𝑣) = 𝑌 → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))))
249, 23mpcom 38 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (∃𝑣𝑉 (𝑋 · 𝑣) = 𝑌 → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌)))
256, 24mpd 15 1 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067  c0 4262  cop 4573  cmpt 5162  cfv 6432  (class class class)co 7272  m cmap 8607  Basecbs 16923  CRingccrg 19795  Unitcui 19892  /rcdvr 19935   Mat cmat 21565   maVecMul cmvmul 21700   matRepV cmatrepV 21717   maDet cmdat 21744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-addf 10961  ax-mulf 10962
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1507  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-om 7708  df-1st 7825  df-2nd 7826  df-supp 7970  df-tpos 8034  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-2o 8290  df-er 8490  df-map 8609  df-pm 8610  df-ixp 8678  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fsupp 9117  df-sup 9189  df-oi 9257  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-xnn0 12317  df-z 12331  df-dec 12449  df-uz 12594  df-rp 12742  df-fz 13251  df-fzo 13394  df-seq 13733  df-exp 13794  df-hash 14056  df-word 14229  df-lsw 14277  df-concat 14285  df-s1 14312  df-substr 14365  df-pfx 14395  df-splice 14474  df-reverse 14483  df-s2 14572  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-starv 16988  df-sca 16989  df-vsca 16990  df-ip 16991  df-tset 16992  df-ple 16993  df-ds 16995  df-unif 16996  df-hom 16997  df-cco 16998  df-0g 17163  df-gsum 17164  df-prds 17169  df-pws 17171  df-mre 17306  df-mrc 17307  df-acs 17309  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-mhm 18441  df-submnd 18442  df-efmnd 18519  df-grp 18591  df-minusg 18592  df-sbg 18593  df-mulg 18712  df-subg 18763  df-ghm 18843  df-gim 18886  df-cntz 18934  df-oppg 18961  df-symg 18986  df-pmtr 19061  df-psgn 19110  df-evpm 19111  df-cmn 19399  df-abl 19400  df-mgp 19732  df-ur 19749  df-srg 19753  df-ring 19796  df-cring 19797  df-oppr 19873  df-dvdsr 19894  df-unit 19895  df-invr 19925  df-dvr 19936  df-rnghom 19970  df-drng 20004  df-subrg 20033  df-lmod 20136  df-lss 20205  df-sra 20445  df-rgmod 20446  df-cnfld 20609  df-zring 20682  df-zrh 20716  df-dsmm 20950  df-frlm 20965  df-assa 21071  df-mamu 21544  df-mat 21566  df-mvmul 21701  df-marrep 21718  df-marepv 21719  df-subma 21737  df-mdet 21745  df-madu 21794  df-minmar1 21795
This theorem is referenced by:  cramer  21851
  Copyright terms: Public domain W3C validator