Step | Hyp | Ref
| Expression |
1 | | cramer.a |
. . 3
β’ π΄ = (π Mat π
) |
2 | | cramer.b |
. . 3
β’ π΅ = (Baseβπ΄) |
3 | | cramer.v |
. . 3
β’ π = ((Baseβπ
) βm π) |
4 | | cramer.x |
. . 3
β’ Β· =
(π
maVecMul β¨π, πβ©) |
5 | | cramer.d |
. . 3
β’ π· = (π maDet π
) |
6 | 1, 2, 3, 4, 5 | slesolex 22175 |
. 2
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β βπ£ β π (π Β· π£) = π) |
7 | | cramer.q |
. . . . 5
β’ / =
(/rβπ
) |
8 | 1, 2, 3, 5, 4, 7 | cramerlem2 22181 |
. . . 4
β’ ((π
β CRing β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β βπ§ β π ((π Β· π§) = π β π§ = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))))) |
9 | 8 | 3adant1l 1176 |
. . 3
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β βπ§ β π ((π Β· π§) = π β π§ = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))))) |
10 | | oveq2 7413 |
. . . . . . . 8
β’ (π§ = π£ β (π Β· π§) = (π Β· π£)) |
11 | 10 | eqeq1d 2734 |
. . . . . . 7
β’ (π§ = π£ β ((π Β· π§) = π β (π Β· π£) = π)) |
12 | | oveq2 7413 |
. . . . . . . 8
β’ (π£ = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) β (π Β· π£) = (π Β· (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))))) |
13 | 12 | eqeq1d 2734 |
. . . . . . 7
β’ (π£ = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) β ((π Β· π£) = π β (π Β· (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) = π)) |
14 | 11, 13 | rexraleqim 3634 |
. . . . . 6
β’
((βπ£ β
π (π Β· π£) = π β§ βπ§ β π ((π Β· π§) = π β π§ = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))))) β (π Β· (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) = π) |
15 | | oveq2 7413 |
. . . . . . . . . 10
β’ (π = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) β (π Β· π) = (π Β· (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))))) |
16 | 15 | adantl 482 |
. . . . . . . . 9
β’ (((π Β· (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) = π β§ π = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) β (π Β· π) = (π Β· (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))))) |
17 | | simpl 483 |
. . . . . . . . 9
β’ (((π Β· (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) = π β§ π = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) β (π Β· (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) = π) |
18 | 16, 17 | eqtrd 2772 |
. . . . . . . 8
β’ (((π Β· (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) = π β§ π = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) β (π Β· π) = π) |
19 | 18 | ex 413 |
. . . . . . 7
β’ ((π Β· (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) = π β (π = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) β (π Β· π) = π)) |
20 | 19 | a1d 25 |
. . . . . 6
β’ ((π Β· (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) = π β (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (π = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) β (π Β· π) = π))) |
21 | 14, 20 | syl 17 |
. . . . 5
β’
((βπ£ β
π (π Β· π£) = π β§ βπ§ β π ((π Β· π§) = π β π§ = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))))) β (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (π = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) β (π Β· π) = π))) |
22 | 21 | expcom 414 |
. . . 4
β’
(βπ§ β
π ((π Β· π§) = π β π§ = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) β (βπ£ β π (π Β· π£) = π β (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (π = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) β (π Β· π) = π)))) |
23 | 22 | com23 86 |
. . 3
β’
(βπ§ β
π ((π Β· π§) = π β π§ = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) β (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (βπ£ β π (π Β· π£) = π β (π = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) β (π Β· π) = π)))) |
24 | 9, 23 | mpcom 38 |
. 2
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (βπ£ β π (π Β· π£) = π β (π = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) β (π Β· π) = π))) |
25 | 6, 24 | mpd 15 |
1
β’ (((π β β
β§ π
β CRing) β§ (π β π΅ β§ π β π) β§ (π·βπ) β (Unitβπ
)) β (π = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) β (π Β· π) = π)) |