| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > cramerlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for cramer 22644. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.) | 
| Ref | Expression | 
|---|---|
| cramer.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| cramer.b | ⊢ 𝐵 = (Base‘𝐴) | 
| cramer.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | 
| cramer.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) | 
| cramer.x | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | 
| cramer.q | ⊢ / = (/r‘𝑅) | 
| Ref | Expression | 
|---|---|
| cramerlem3 | ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cramer.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | cramer.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | cramer.v | . . 3 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
| 4 | cramer.x | . . 3 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
| 5 | cramer.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 6 | 1, 2, 3, 4, 5 | slesolex 22635 | . 2 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∃𝑣 ∈ 𝑉 (𝑋 · 𝑣) = 𝑌) | 
| 7 | cramer.q | . . . . 5 ⊢ / = (/r‘𝑅) | |
| 8 | 1, 2, 3, 5, 4, 7 | cramerlem2 22641 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) | 
| 9 | 8 | 3adant1l 1176 | . . 3 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) | 
| 10 | oveq2 7420 | . . . . . . . 8 ⊢ (𝑧 = 𝑣 → (𝑋 · 𝑧) = (𝑋 · 𝑣)) | |
| 11 | 10 | eqeq1d 2736 | . . . . . . 7 ⊢ (𝑧 = 𝑣 → ((𝑋 · 𝑧) = 𝑌 ↔ (𝑋 · 𝑣) = 𝑌)) | 
| 12 | oveq2 7420 | . . . . . . . 8 ⊢ (𝑣 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑣) = (𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) | |
| 13 | 12 | eqeq1d 2736 | . . . . . . 7 ⊢ (𝑣 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → ((𝑋 · 𝑣) = 𝑌 ↔ (𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌)) | 
| 14 | 11, 13 | rexraleqim 3630 | . . . . . 6 ⊢ ((∃𝑣 ∈ 𝑉 (𝑋 · 𝑣) = 𝑌 ∧ ∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) → (𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌) | 
| 15 | oveq2 7420 | . . . . . . . . . 10 ⊢ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = (𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) | |
| 16 | 15 | adantl 481 | . . . . . . . . 9 ⊢ (((𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌 ∧ 𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) → (𝑋 · 𝑍) = (𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) | 
| 17 | simpl 482 | . . . . . . . . 9 ⊢ (((𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌 ∧ 𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) → (𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌) | |
| 18 | 16, 17 | eqtrd 2769 | . . . . . . . 8 ⊢ (((𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌 ∧ 𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) → (𝑋 · 𝑍) = 𝑌) | 
| 19 | 18 | ex 412 | . . . . . . 7 ⊢ ((𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌 → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)) | 
| 20 | 19 | a1d 25 | . . . . . 6 ⊢ ((𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌 → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌))) | 
| 21 | 14, 20 | syl 17 | . . . . 5 ⊢ ((∃𝑣 ∈ 𝑉 (𝑋 · 𝑣) = 𝑌 ∧ ∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌))) | 
| 22 | 21 | expcom 413 | . . . 4 ⊢ (∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) → (∃𝑣 ∈ 𝑉 (𝑋 · 𝑣) = 𝑌 → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)))) | 
| 23 | 22 | com23 86 | . . 3 ⊢ (∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (∃𝑣 ∈ 𝑉 (𝑋 · 𝑣) = 𝑌 → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)))) | 
| 24 | 9, 23 | mpcom 38 | . 2 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (∃𝑣 ∈ 𝑉 (𝑋 · 𝑣) = 𝑌 → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌))) | 
| 25 | 6, 24 | mpd 15 | 1 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 ∅c0 4313 〈cop 4612 ↦ cmpt 5205 ‘cfv 6540 (class class class)co 7412 ↑m cmap 8847 Basecbs 17228 CRingccrg 20198 Unitcui 20322 /rcdvr 20367 Mat cmat 22358 maVecMul cmvmul 22493 matRepV cmatrepV 22510 maDet cmdat 22537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-addf 11215 ax-mulf 11216 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1511 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8726 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9383 df-sup 9463 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-xnn0 12582 df-z 12596 df-dec 12716 df-uz 12860 df-rp 13016 df-fz 13529 df-fzo 13676 df-seq 14024 df-exp 14084 df-hash 14351 df-word 14534 df-lsw 14582 df-concat 14590 df-s1 14615 df-substr 14660 df-pfx 14690 df-splice 14769 df-reverse 14778 df-s2 14868 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-starv 17287 df-sca 17288 df-vsca 17289 df-ip 17290 df-tset 17291 df-ple 17292 df-ds 17294 df-unif 17295 df-hom 17296 df-cco 17297 df-0g 17456 df-gsum 17457 df-prds 17462 df-pws 17464 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-mhm 18764 df-submnd 18765 df-efmnd 18850 df-grp 18922 df-minusg 18923 df-sbg 18924 df-mulg 19054 df-subg 19109 df-ghm 19199 df-gim 19245 df-cntz 19303 df-oppg 19332 df-symg 19354 df-pmtr 19427 df-psgn 19476 df-evpm 19477 df-cmn 19767 df-abl 19768 df-mgp 20105 df-rng 20117 df-ur 20146 df-srg 20151 df-ring 20199 df-cring 20200 df-oppr 20301 df-dvdsr 20324 df-unit 20325 df-invr 20355 df-dvr 20368 df-rhm 20439 df-subrng 20513 df-subrg 20537 df-drng 20698 df-lmod 20827 df-lss 20897 df-sra 21139 df-rgmod 21140 df-cnfld 21326 df-zring 21419 df-zrh 21475 df-dsmm 21705 df-frlm 21720 df-assa 21826 df-mamu 22342 df-mat 22359 df-mvmul 22494 df-marrep 22511 df-marepv 22512 df-subma 22530 df-mdet 22538 df-madu 22587 df-minmar1 22588 | 
| This theorem is referenced by: cramer 22644 | 
| Copyright terms: Public domain | W3C validator |