MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerlem3 Structured version   Visualization version   GIF version

Theorem cramerlem3 22182
Description: Lemma 3 for cramer 22184. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramer.a 𝐴 = (𝑁 Mat 𝑅)
cramer.b 𝐡 = (Baseβ€˜π΄)
cramer.v 𝑉 = ((Baseβ€˜π‘…) ↑m 𝑁)
cramer.d 𝐷 = (𝑁 maDet 𝑅)
cramer.x Β· = (𝑅 maVecMul βŸ¨π‘, π‘βŸ©)
cramer.q / = (/rβ€˜π‘…)
Assertion
Ref Expression
cramerlem3 (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ))
Distinct variable groups:   𝐡,𝑖   𝐷,𝑖   𝑖,𝑁   𝑅,𝑖   𝑖,𝑉   𝑖,𝑋   𝑖,π‘Œ   𝑖,𝑍   Β· ,𝑖   / ,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem cramerlem3
Dummy variables 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cramer.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 cramer.b . . 3 𝐡 = (Baseβ€˜π΄)
3 cramer.v . . 3 𝑉 = ((Baseβ€˜π‘…) ↑m 𝑁)
4 cramer.x . . 3 Β· = (𝑅 maVecMul βŸ¨π‘, π‘βŸ©)
5 cramer.d . . 3 𝐷 = (𝑁 maDet 𝑅)
61, 2, 3, 4, 5slesolex 22175 . 2 (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ βˆƒπ‘£ ∈ 𝑉 (𝑋 Β· 𝑣) = π‘Œ)
7 cramer.q . . . . 5 / = (/rβ€˜π‘…)
81, 2, 3, 5, 4, 7cramerlem2 22181 . . . 4 ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ βˆ€π‘§ ∈ 𝑉 ((𝑋 Β· 𝑧) = π‘Œ β†’ 𝑧 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))))
983adant1l 1176 . . 3 (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ βˆ€π‘§ ∈ 𝑉 ((𝑋 Β· 𝑧) = π‘Œ β†’ 𝑧 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))))
10 oveq2 7413 . . . . . . . 8 (𝑧 = 𝑣 β†’ (𝑋 Β· 𝑧) = (𝑋 Β· 𝑣))
1110eqeq1d 2734 . . . . . . 7 (𝑧 = 𝑣 β†’ ((𝑋 Β· 𝑧) = π‘Œ ↔ (𝑋 Β· 𝑣) = π‘Œ))
12 oveq2 7413 . . . . . . . 8 (𝑣 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑣) = (𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))))
1312eqeq1d 2734 . . . . . . 7 (𝑣 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ ((𝑋 Β· 𝑣) = π‘Œ ↔ (𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ))
1411, 13rexraleqim 3634 . . . . . 6 ((βˆƒπ‘£ ∈ 𝑉 (𝑋 Β· 𝑣) = π‘Œ ∧ βˆ€π‘§ ∈ 𝑉 ((𝑋 Β· 𝑧) = π‘Œ β†’ 𝑧 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))))) β†’ (𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ)
15 oveq2 7413 . . . . . . . . . 10 (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = (𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))))
1615adantl 482 . . . . . . . . 9 (((𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ ∧ 𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) β†’ (𝑋 Β· 𝑍) = (𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))))
17 simpl 483 . . . . . . . . 9 (((𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ ∧ 𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) β†’ (𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ)
1816, 17eqtrd 2772 . . . . . . . 8 (((𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ ∧ 𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) β†’ (𝑋 Β· 𝑍) = π‘Œ)
1918ex 413 . . . . . . 7 ((𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ))
2019a1d 25 . . . . . 6 ((𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ β†’ (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ)))
2114, 20syl 17 . . . . 5 ((βˆƒπ‘£ ∈ 𝑉 (𝑋 Β· 𝑣) = π‘Œ ∧ βˆ€π‘§ ∈ 𝑉 ((𝑋 Β· 𝑧) = π‘Œ β†’ 𝑧 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))))) β†’ (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ)))
2221expcom 414 . . . 4 (βˆ€π‘§ ∈ 𝑉 ((𝑋 Β· 𝑧) = π‘Œ β†’ 𝑧 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) β†’ (βˆƒπ‘£ ∈ 𝑉 (𝑋 Β· 𝑣) = π‘Œ β†’ (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ))))
2322com23 86 . . 3 (βˆ€π‘§ ∈ 𝑉 ((𝑋 Β· 𝑧) = π‘Œ β†’ 𝑧 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) β†’ (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ (βˆƒπ‘£ ∈ 𝑉 (𝑋 Β· 𝑣) = π‘Œ β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ))))
249, 23mpcom 38 . 2 (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ (βˆƒπ‘£ ∈ 𝑉 (𝑋 Β· 𝑣) = π‘Œ β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ)))
256, 24mpd 15 1 (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  βˆ…c0 4321  βŸ¨cop 4633   ↦ cmpt 5230  β€˜cfv 6540  (class class class)co 7405   ↑m cmap 8816  Basecbs 17140  CRingccrg 20050  Unitcui 20161  /rcdvr 20206   Mat cmat 21898   maVecMul cmvmul 22033   matRepV cmatrepV 22050   maDet cmdat 22077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-splice 14696  df-reverse 14705  df-s2 14795  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-efmnd 18746  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-gim 19127  df-cntz 19175  df-oppg 19204  df-symg 19229  df-pmtr 19304  df-psgn 19353  df-evpm 19354  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-srg 20003  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-dvr 20207  df-rnghom 20243  df-drng 20309  df-subrg 20353  df-lmod 20465  df-lss 20535  df-sra 20777  df-rgmod 20778  df-cnfld 20937  df-zring 21010  df-zrh 21044  df-dsmm 21278  df-frlm 21293  df-assa 21399  df-mamu 21877  df-mat 21899  df-mvmul 22034  df-marrep 22051  df-marepv 22052  df-subma 22070  df-mdet 22078  df-madu 22127  df-minmar1 22128
This theorem is referenced by:  cramer  22184
  Copyright terms: Public domain W3C validator