| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cramerlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for cramer 22604. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.) |
| Ref | Expression |
|---|---|
| cramer.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cramer.b | ⊢ 𝐵 = (Base‘𝐴) |
| cramer.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| cramer.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| cramer.x | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
| cramer.q | ⊢ / = (/r‘𝑅) |
| Ref | Expression |
|---|---|
| cramerlem3 | ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cramer.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | cramer.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | cramer.v | . . 3 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
| 4 | cramer.x | . . 3 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
| 5 | cramer.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 6 | 1, 2, 3, 4, 5 | slesolex 22595 | . 2 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∃𝑣 ∈ 𝑉 (𝑋 · 𝑣) = 𝑌) |
| 7 | cramer.q | . . . . 5 ⊢ / = (/r‘𝑅) | |
| 8 | 1, 2, 3, 5, 4, 7 | cramerlem2 22601 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) |
| 9 | 8 | 3adant1l 1177 | . . 3 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) |
| 10 | oveq2 7354 | . . . . . . . 8 ⊢ (𝑧 = 𝑣 → (𝑋 · 𝑧) = (𝑋 · 𝑣)) | |
| 11 | 10 | eqeq1d 2733 | . . . . . . 7 ⊢ (𝑧 = 𝑣 → ((𝑋 · 𝑧) = 𝑌 ↔ (𝑋 · 𝑣) = 𝑌)) |
| 12 | oveq2 7354 | . . . . . . . 8 ⊢ (𝑣 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑣) = (𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) | |
| 13 | 12 | eqeq1d 2733 | . . . . . . 7 ⊢ (𝑣 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → ((𝑋 · 𝑣) = 𝑌 ↔ (𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌)) |
| 14 | 11, 13 | rexraleqim 3602 | . . . . . 6 ⊢ ((∃𝑣 ∈ 𝑉 (𝑋 · 𝑣) = 𝑌 ∧ ∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) → (𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌) |
| 15 | oveq2 7354 | . . . . . . . . . 10 ⊢ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = (𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) | |
| 16 | 15 | adantl 481 | . . . . . . . . 9 ⊢ (((𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌 ∧ 𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) → (𝑋 · 𝑍) = (𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) |
| 17 | simpl 482 | . . . . . . . . 9 ⊢ (((𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌 ∧ 𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) → (𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌) | |
| 18 | 16, 17 | eqtrd 2766 | . . . . . . . 8 ⊢ (((𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌 ∧ 𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) → (𝑋 · 𝑍) = 𝑌) |
| 19 | 18 | ex 412 | . . . . . . 7 ⊢ ((𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌 → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)) |
| 20 | 19 | a1d 25 | . . . . . 6 ⊢ ((𝑋 · (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) = 𝑌 → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌))) |
| 21 | 14, 20 | syl 17 | . . . . 5 ⊢ ((∃𝑣 ∈ 𝑉 (𝑋 · 𝑣) = 𝑌 ∧ ∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))))) → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌))) |
| 22 | 21 | expcom 413 | . . . 4 ⊢ (∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) → (∃𝑣 ∈ 𝑉 (𝑋 · 𝑣) = 𝑌 → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)))) |
| 23 | 22 | com23 86 | . . 3 ⊢ (∀𝑧 ∈ 𝑉 ((𝑋 · 𝑧) = 𝑌 → 𝑧 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (∃𝑣 ∈ 𝑉 (𝑋 · 𝑣) = 𝑌 → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)))) |
| 24 | 9, 23 | mpcom 38 | . 2 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (∃𝑣 ∈ 𝑉 (𝑋 · 𝑣) = 𝑌 → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌))) |
| 25 | 6, 24 | mpd 15 | 1 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) → (𝑋 · 𝑍) = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∅c0 4283 〈cop 4582 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Basecbs 17117 CRingccrg 20150 Unitcui 20271 /rcdvr 20316 Mat cmat 22320 maVecMul cmvmul 22453 matRepV cmatrepV 22470 maDet cmdat 22497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-addf 11082 ax-mulf 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-xnn0 12452 df-z 12466 df-dec 12586 df-uz 12730 df-rp 12888 df-fz 13405 df-fzo 13552 df-seq 13906 df-exp 13966 df-hash 14235 df-word 14418 df-lsw 14467 df-concat 14475 df-s1 14501 df-substr 14546 df-pfx 14576 df-splice 14654 df-reverse 14663 df-s2 14752 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-0g 17342 df-gsum 17343 df-prds 17348 df-pws 17350 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-efmnd 18774 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-ghm 19123 df-gim 19169 df-cntz 19227 df-oppg 19256 df-symg 19280 df-pmtr 19352 df-psgn 19401 df-evpm 19402 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-rhm 20388 df-subrng 20459 df-subrg 20483 df-drng 20644 df-lmod 20793 df-lss 20863 df-sra 21105 df-rgmod 21106 df-cnfld 21290 df-zring 21382 df-zrh 21438 df-dsmm 21667 df-frlm 21682 df-assa 21788 df-mamu 22304 df-mat 22321 df-mvmul 22454 df-marrep 22471 df-marepv 22472 df-subma 22490 df-mdet 22498 df-madu 22547 df-minmar1 22548 |
| This theorem is referenced by: cramer 22604 |
| Copyright terms: Public domain | W3C validator |