MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerlem3 Structured version   Visualization version   GIF version

Theorem cramerlem3 22546
Description: Lemma 3 for cramer 22548. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramer.a 𝐴 = (𝑁 Mat 𝑅)
cramer.b 𝐡 = (Baseβ€˜π΄)
cramer.v 𝑉 = ((Baseβ€˜π‘…) ↑m 𝑁)
cramer.d 𝐷 = (𝑁 maDet 𝑅)
cramer.x Β· = (𝑅 maVecMul βŸ¨π‘, π‘βŸ©)
cramer.q / = (/rβ€˜π‘…)
Assertion
Ref Expression
cramerlem3 (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ))
Distinct variable groups:   𝐡,𝑖   𝐷,𝑖   𝑖,𝑁   𝑅,𝑖   𝑖,𝑉   𝑖,𝑋   𝑖,π‘Œ   𝑖,𝑍   Β· ,𝑖   / ,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem cramerlem3
Dummy variables 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cramer.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 cramer.b . . 3 𝐡 = (Baseβ€˜π΄)
3 cramer.v . . 3 𝑉 = ((Baseβ€˜π‘…) ↑m 𝑁)
4 cramer.x . . 3 Β· = (𝑅 maVecMul βŸ¨π‘, π‘βŸ©)
5 cramer.d . . 3 𝐷 = (𝑁 maDet 𝑅)
61, 2, 3, 4, 5slesolex 22539 . 2 (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ βˆƒπ‘£ ∈ 𝑉 (𝑋 Β· 𝑣) = π‘Œ)
7 cramer.q . . . . 5 / = (/rβ€˜π‘…)
81, 2, 3, 5, 4, 7cramerlem2 22545 . . . 4 ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ βˆ€π‘§ ∈ 𝑉 ((𝑋 Β· 𝑧) = π‘Œ β†’ 𝑧 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))))
983adant1l 1173 . . 3 (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ βˆ€π‘§ ∈ 𝑉 ((𝑋 Β· 𝑧) = π‘Œ β†’ 𝑧 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))))
10 oveq2 7413 . . . . . . . 8 (𝑧 = 𝑣 β†’ (𝑋 Β· 𝑧) = (𝑋 Β· 𝑣))
1110eqeq1d 2728 . . . . . . 7 (𝑧 = 𝑣 β†’ ((𝑋 Β· 𝑧) = π‘Œ ↔ (𝑋 Β· 𝑣) = π‘Œ))
12 oveq2 7413 . . . . . . . 8 (𝑣 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑣) = (𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))))
1312eqeq1d 2728 . . . . . . 7 (𝑣 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ ((𝑋 Β· 𝑣) = π‘Œ ↔ (𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ))
1411, 13rexraleqim 3630 . . . . . 6 ((βˆƒπ‘£ ∈ 𝑉 (𝑋 Β· 𝑣) = π‘Œ ∧ βˆ€π‘§ ∈ 𝑉 ((𝑋 Β· 𝑧) = π‘Œ β†’ 𝑧 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))))) β†’ (𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ)
15 oveq2 7413 . . . . . . . . . 10 (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = (𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))))
1615adantl 481 . . . . . . . . 9 (((𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ ∧ 𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) β†’ (𝑋 Β· 𝑍) = (𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))))
17 simpl 482 . . . . . . . . 9 (((𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ ∧ 𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) β†’ (𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ)
1816, 17eqtrd 2766 . . . . . . . 8 (((𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ ∧ 𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) β†’ (𝑋 Β· 𝑍) = π‘Œ)
1918ex 412 . . . . . . 7 ((𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ))
2019a1d 25 . . . . . 6 ((𝑋 Β· (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) = π‘Œ β†’ (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ)))
2114, 20syl 17 . . . . 5 ((βˆƒπ‘£ ∈ 𝑉 (𝑋 Β· 𝑣) = π‘Œ ∧ βˆ€π‘§ ∈ 𝑉 ((𝑋 Β· 𝑧) = π‘Œ β†’ 𝑧 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))))) β†’ (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ)))
2221expcom 413 . . . 4 (βˆ€π‘§ ∈ 𝑉 ((𝑋 Β· 𝑧) = π‘Œ β†’ 𝑧 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) β†’ (βˆƒπ‘£ ∈ 𝑉 (𝑋 Β· 𝑣) = π‘Œ β†’ (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ))))
2322com23 86 . . 3 (βˆ€π‘§ ∈ 𝑉 ((𝑋 Β· 𝑧) = π‘Œ β†’ 𝑧 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹)))) β†’ (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ (βˆƒπ‘£ ∈ 𝑉 (𝑋 Β· 𝑣) = π‘Œ β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ))))
249, 23mpcom 38 . 2 (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ (βˆƒπ‘£ ∈ 𝑉 (𝑋 Β· 𝑣) = π‘Œ β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ)))
256, 24mpd 15 1 (((𝑁 β‰  βˆ… ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝑉) ∧ (π·β€˜π‘‹) ∈ (Unitβ€˜π‘…)) β†’ (𝑍 = (𝑖 ∈ 𝑁 ↦ ((π·β€˜((𝑋(𝑁 matRepV 𝑅)π‘Œ)β€˜π‘–)) / (π·β€˜π‘‹))) β†’ (𝑋 Β· 𝑍) = π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055  βˆƒwrex 3064  βˆ…c0 4317  βŸ¨cop 4629   ↦ cmpt 5224  β€˜cfv 6537  (class class class)co 7405   ↑m cmap 8822  Basecbs 17153  CRingccrg 20139  Unitcui 20257  /rcdvr 20302   Mat cmat 22262   maVecMul cmvmul 22397   matRepV cmatrepV 22414   maDet cmdat 22441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-xor 1505  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-tpos 8212  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-xnn0 12549  df-z 12563  df-dec 12682  df-uz 12827  df-rp 12981  df-fz 13491  df-fzo 13634  df-seq 13973  df-exp 14033  df-hash 14296  df-word 14471  df-lsw 14519  df-concat 14527  df-s1 14552  df-substr 14597  df-pfx 14627  df-splice 14706  df-reverse 14715  df-s2 14805  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-starv 17221  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-unif 17229  df-hom 17230  df-cco 17231  df-0g 17396  df-gsum 17397  df-prds 17402  df-pws 17404  df-mre 17539  df-mrc 17540  df-acs 17542  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18713  df-submnd 18714  df-efmnd 18794  df-grp 18866  df-minusg 18867  df-sbg 18868  df-mulg 18996  df-subg 19050  df-ghm 19139  df-gim 19184  df-cntz 19233  df-oppg 19262  df-symg 19287  df-pmtr 19362  df-psgn 19411  df-evpm 19412  df-cmn 19702  df-abl 19703  df-mgp 20040  df-rng 20058  df-ur 20087  df-srg 20092  df-ring 20140  df-cring 20141  df-oppr 20236  df-dvdsr 20259  df-unit 20260  df-invr 20290  df-dvr 20303  df-rhm 20374  df-subrng 20446  df-subrg 20471  df-drng 20589  df-lmod 20708  df-lss 20779  df-sra 21021  df-rgmod 21022  df-cnfld 21241  df-zring 21334  df-zrh 21390  df-dsmm 21627  df-frlm 21642  df-assa 21748  df-mamu 22241  df-mat 22263  df-mvmul 22398  df-marrep 22415  df-marepv 22416  df-subma 22434  df-mdet 22442  df-madu 22491  df-minmar1 22492
This theorem is referenced by:  cramer  22548
  Copyright terms: Public domain W3C validator