Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxpxfr2d Structured version   Visualization version   GIF version

Theorem ralxpxfr2d 3557
 Description: Transfer a universal quantifier between one variable with pair-like semantics and two. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Hypotheses
Ref Expression
ralxpxfr2d.a 𝐴 ∈ V
ralxpxfr2d.b (𝜑 → (𝑥𝐵 ↔ ∃𝑦𝐶𝑧𝐷 𝑥 = 𝐴))
ralxpxfr2d.c ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralxpxfr2d (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶𝑧𝐷 𝜒))
Distinct variable groups:   𝜑,𝑥,𝑧   𝜑,𝑦,𝑥   𝜓,𝑦   𝜓,𝑧   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑦,𝑧)   𝐷(𝑦,𝑧)

Proof of Theorem ralxpxfr2d
StepHypRef Expression
1 df-ral 3075 . . . 4 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
2 ralxpxfr2d.b . . . . . 6 (𝜑 → (𝑥𝐵 ↔ ∃𝑦𝐶𝑧𝐷 𝑥 = 𝐴))
32imbi1d 345 . . . . 5 (𝜑 → ((𝑥𝐵𝜓) ↔ (∃𝑦𝐶𝑧𝐷 𝑥 = 𝐴𝜓)))
43albidv 1921 . . . 4 (𝜑 → (∀𝑥(𝑥𝐵𝜓) ↔ ∀𝑥(∃𝑦𝐶𝑧𝐷 𝑥 = 𝐴𝜓)))
51, 4syl5bb 286 . . 3 (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑥(∃𝑦𝐶𝑧𝐷 𝑥 = 𝐴𝜓)))
6 ralcom4 3162 . . . 4 (∀𝑦𝐶𝑥𝑧𝐷 (𝑥 = 𝐴𝜓) ↔ ∀𝑥𝑦𝐶𝑧𝐷 (𝑥 = 𝐴𝜓))
7 ralcom4 3162 . . . . 5 (∀𝑧𝐷𝑥(𝑥 = 𝐴𝜓) ↔ ∀𝑥𝑧𝐷 (𝑥 = 𝐴𝜓))
87ralbii 3097 . . . 4 (∀𝑦𝐶𝑧𝐷𝑥(𝑥 = 𝐴𝜓) ↔ ∀𝑦𝐶𝑥𝑧𝐷 (𝑥 = 𝐴𝜓))
9 r19.23v 3203 . . . . . . 7 (∀𝑧𝐷 (𝑥 = 𝐴𝜓) ↔ (∃𝑧𝐷 𝑥 = 𝐴𝜓))
109ralbii 3097 . . . . . 6 (∀𝑦𝐶𝑧𝐷 (𝑥 = 𝐴𝜓) ↔ ∀𝑦𝐶 (∃𝑧𝐷 𝑥 = 𝐴𝜓))
11 r19.23v 3203 . . . . . 6 (∀𝑦𝐶 (∃𝑧𝐷 𝑥 = 𝐴𝜓) ↔ (∃𝑦𝐶𝑧𝐷 𝑥 = 𝐴𝜓))
1210, 11bitr2i 279 . . . . 5 ((∃𝑦𝐶𝑧𝐷 𝑥 = 𝐴𝜓) ↔ ∀𝑦𝐶𝑧𝐷 (𝑥 = 𝐴𝜓))
1312albii 1821 . . . 4 (∀𝑥(∃𝑦𝐶𝑧𝐷 𝑥 = 𝐴𝜓) ↔ ∀𝑥𝑦𝐶𝑧𝐷 (𝑥 = 𝐴𝜓))
146, 8, 133bitr4ri 307 . . 3 (∀𝑥(∃𝑦𝐶𝑧𝐷 𝑥 = 𝐴𝜓) ↔ ∀𝑦𝐶𝑧𝐷𝑥(𝑥 = 𝐴𝜓))
155, 14bitrdi 290 . 2 (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶𝑧𝐷𝑥(𝑥 = 𝐴𝜓)))
16 ralxpxfr2d.c . . . . . 6 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
1716pm5.74da 803 . . . . 5 (𝜑 → ((𝑥 = 𝐴𝜓) ↔ (𝑥 = 𝐴𝜒)))
1817albidv 1921 . . . 4 (𝜑 → (∀𝑥(𝑥 = 𝐴𝜓) ↔ ∀𝑥(𝑥 = 𝐴𝜒)))
19 ralxpxfr2d.a . . . . 5 𝐴 ∈ V
20 biidd 265 . . . . 5 (𝑥 = 𝐴 → (𝜒𝜒))
2119, 20ceqsalv 3448 . . . 4 (∀𝑥(𝑥 = 𝐴𝜒) ↔ 𝜒)
2218, 21bitrdi 290 . . 3 (𝜑 → (∀𝑥(𝑥 = 𝐴𝜓) ↔ 𝜒))
23222ralbidv 3128 . 2 (𝜑 → (∀𝑦𝐶𝑧𝐷𝑥(𝑥 = 𝐴𝜓) ↔ ∀𝑦𝐶𝑧𝐷 𝜒))
2415, 23bitrd 282 1 (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶𝑧𝐷 𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536   = wceq 1538   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071  Vcvv 3409 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-11 2158  ax-12 2175 This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-clel 2830  df-ral 3075  df-rex 3076 This theorem is referenced by:  ralxpmap  8478
 Copyright terms: Public domain W3C validator