Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impancom | Structured version Visualization version GIF version |
Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.) |
Ref | Expression |
---|---|
impancom.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
impancom | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impancom.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
4 | 3 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 → 𝜃)) |
Copyright terms: Public domain | W3C validator |