![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syli | Structured version Visualization version GIF version |
Description: Syllogism inference with common nested antecedent. (Contributed by NM, 4-Nov-2004.) |
Ref | Expression |
---|---|
syli.1 | ⊢ (𝜓 → (𝜑 → 𝜒)) |
syli.2 | ⊢ (𝜒 → (𝜑 → 𝜃)) |
Ref | Expression |
---|---|
syli | ⊢ (𝜓 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syli.1 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) | |
2 | syli.2 | . . 3 ⊢ (𝜒 → (𝜑 → 𝜃)) | |
3 | 2 | com12 32 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
4 | 1, 3 | sylcom 30 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: ibd 269 bija 380 equvel 2464 2eu6 2660 rgen2a 3379 rexraleqim 3660 elreldm 5960 tz6.12cOLD 6947 onminex 7838 rntpos 8280 smores 8408 seqomlem2 8507 f1domg 9032 php 9273 phpOLD 9285 fodomnum 10126 carduniima 10165 cardmin 10633 negn0 11719 sqrmo 15300 isch3 31273 cgrtriv 35966 wl-lem-moexsb 37522 grpomndo 37835 elghomlem2OLD 37846 tz6.12c-afv2 47157 |
Copyright terms: Public domain | W3C validator |