Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rextru Structured version   Visualization version   GIF version

Theorem rextru 46037
Description: Two ways of expressing "at least one" element. (Contributed by Zhi Wang, 23-Sep-2024.)
Assertion
Ref Expression
rextru (∃𝑥 𝑥𝐴 ↔ ∃𝑥𝐴 ⊤)

Proof of Theorem rextru
StepHypRef Expression
1 tru 1543 . . . 4
21biantru 529 . . 3 (𝑥𝐴 ↔ (𝑥𝐴 ∧ ⊤))
32exbii 1851 . 2 (∃𝑥 𝑥𝐴 ↔ ∃𝑥(𝑥𝐴 ∧ ⊤))
4 df-rex 3069 . 2 (∃𝑥𝐴 ⊤ ↔ ∃𝑥(𝑥𝐴 ∧ ⊤))
53, 4bitr4i 277 1 (∃𝑥 𝑥𝐴 ↔ ∃𝑥𝐴 ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wtru 1540  wex 1783  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-rex 3069
This theorem is referenced by:  reutruALT  46040
  Copyright terms: Public domain W3C validator