![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iinss2d | Structured version Visualization version GIF version |
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
Ref | Expression |
---|---|
iinss2d.1 | ⊢ Ⅎ𝑥𝜑 |
iinss2d.2 | ⊢ Ⅎ𝑥𝐴 |
iinss2d.3 | ⊢ Ⅎ𝑥𝐶 |
iinss2d.4 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
iinss2d.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
iinss2d | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinss2d.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | iinss2d.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ⊤) → 𝐵 ⊆ 𝐶) |
4 | iinss2d.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
5 | iinss2d.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
6 | 5 | n0f 4372 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
7 | 4, 6 | sylib 218 | . . . 4 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
8 | rextru 3083 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ⊤) | |
9 | 7, 8 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ⊤) |
10 | 1, 3, 9 | reximdd 45053 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
11 | iinss2d.3 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
12 | 11 | iinssf 45040 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
13 | 10, 12 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1538 ∃wex 1777 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ≠ wne 2946 ∃wrex 3076 ⊆ wss 3976 ∅c0 4352 ∩ ciin 5016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-iin 5018 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |