Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinss2d Structured version   Visualization version   GIF version

Theorem iinss2d 45062
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
iinss2d.1 𝑥𝜑
iinss2d.2 𝑥𝐴
iinss2d.3 𝑥𝐶
iinss2d.4 (𝜑𝐴 ≠ ∅)
iinss2d.5 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
iinss2d (𝜑 𝑥𝐴 𝐵𝐶)

Proof of Theorem iinss2d
StepHypRef Expression
1 iinss2d.1 . . 3 𝑥𝜑
2 iinss2d.5 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
323adant3 1132 . . 3 ((𝜑𝑥𝐴 ∧ ⊤) → 𝐵𝐶)
4 iinss2d.4 . . . . 5 (𝜑𝐴 ≠ ∅)
5 iinss2d.2 . . . . . 6 𝑥𝐴
65n0f 4372 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
74, 6sylib 218 . . . 4 (𝜑 → ∃𝑥 𝑥𝐴)
8 rextru 3083 . . . 4 (∃𝑥 𝑥𝐴 ↔ ∃𝑥𝐴 ⊤)
97, 8sylib 218 . . 3 (𝜑 → ∃𝑥𝐴 ⊤)
101, 3, 9reximdd 45053 . 2 (𝜑 → ∃𝑥𝐴 𝐵𝐶)
11 iinss2d.3 . . 3 𝑥𝐶
1211iinssf 45040 . 2 (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
1310, 12syl 17 1 (𝜑 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wtru 1538  wex 1777  wnf 1781  wcel 2108  wnfc 2893  wne 2946  wrex 3076  wss 3976  c0 4352   ciin 5016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-iin 5018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator