![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iinss2d | Structured version Visualization version GIF version |
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
Ref | Expression |
---|---|
iinss2d.1 | ⊢ Ⅎ𝑥𝜑 |
iinss2d.2 | ⊢ Ⅎ𝑥𝐴 |
iinss2d.3 | ⊢ Ⅎ𝑥𝐶 |
iinss2d.4 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
iinss2d.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
iinss2d | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinss2d.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | iinss2d.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
3 | 2 | 3adant3 1130 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ⊤) → 𝐵 ⊆ 𝐶) |
4 | iinss2d.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
5 | iinss2d.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
6 | 5 | n0f 4341 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
7 | 4, 6 | sylib 217 | . . . 4 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
8 | rextru 3075 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ⊤) | |
9 | 7, 8 | sylib 217 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ⊤) |
10 | 1, 3, 9 | reximdd 44142 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
11 | iinss2d.3 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
12 | 11 | iinssf 44128 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
13 | 10, 12 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ⊤wtru 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2104 Ⅎwnfc 2881 ≠ wne 2938 ∃wrex 3068 ⊆ wss 3947 ∅c0 4321 ∩ ciin 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-v 3474 df-dif 3950 df-in 3954 df-ss 3964 df-nul 4322 df-iin 4999 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |