Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinss2d Structured version   Visualization version   GIF version

Theorem iinss2d 45200
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
iinss2d.1 𝑥𝜑
iinss2d.2 𝑥𝐴
iinss2d.3 𝑥𝐶
iinss2d.4 (𝜑𝐴 ≠ ∅)
iinss2d.5 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
iinss2d (𝜑 𝑥𝐴 𝐵𝐶)

Proof of Theorem iinss2d
StepHypRef Expression
1 iinss2d.1 . . 3 𝑥𝜑
2 iinss2d.5 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝐶)
323adant3 1132 . . 3 ((𝜑𝑥𝐴 ∧ ⊤) → 𝐵𝐶)
4 iinss2d.4 . . . . 5 (𝜑𝐴 ≠ ∅)
5 iinss2d.2 . . . . . 6 𝑥𝐴
65n0f 4299 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
74, 6sylib 218 . . . 4 (𝜑 → ∃𝑥 𝑥𝐴)
8 rextru 3063 . . . 4 (∃𝑥 𝑥𝐴 ↔ ∃𝑥𝐴 ⊤)
97, 8sylib 218 . . 3 (𝜑 → ∃𝑥𝐴 ⊤)
101, 3, 9reximdd 45191 . 2 (𝜑 → ∃𝑥𝐴 𝐵𝐶)
11 iinss2d.3 . . 3 𝑥𝐶
1211iinssf 45181 . 2 (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
1310, 12syl 17 1 (𝜑 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wtru 1542  wex 1780  wnf 1784  wcel 2111  wnfc 2879  wne 2928  wrex 3056  wss 3902  c0 4283   ciin 4942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3905  df-ss 3919  df-nul 4284  df-iin 4944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator