| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iinss2d | Structured version Visualization version GIF version | ||
| Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| iinss2d.1 | ⊢ Ⅎ𝑥𝜑 |
| iinss2d.2 | ⊢ Ⅎ𝑥𝐴 |
| iinss2d.3 | ⊢ Ⅎ𝑥𝐶 |
| iinss2d.4 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| iinss2d.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| iinss2d | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinss2d.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | iinss2d.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
| 3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ⊤) → 𝐵 ⊆ 𝐶) |
| 4 | iinss2d.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 5 | iinss2d.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 5 | n0f 4348 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| 7 | 4, 6 | sylib 218 | . . . 4 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| 8 | rextru 3076 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ⊤) | |
| 9 | 7, 8 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ⊤) |
| 10 | 1, 3, 9 | reximdd 45158 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 11 | iinss2d.3 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
| 12 | 11 | iinssf 45148 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 13 | 10, 12 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1540 ∃wex 1778 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2889 ≠ wne 2939 ∃wrex 3069 ⊆ wss 3950 ∅c0 4332 ∩ ciin 4991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-v 3481 df-dif 3953 df-ss 3967 df-nul 4333 df-iin 4993 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |