| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iinss2d | Structured version Visualization version GIF version | ||
| Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| iinss2d.1 | ⊢ Ⅎ𝑥𝜑 |
| iinss2d.2 | ⊢ Ⅎ𝑥𝐴 |
| iinss2d.3 | ⊢ Ⅎ𝑥𝐶 |
| iinss2d.4 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| iinss2d.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| iinss2d | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinss2d.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | iinss2d.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
| 3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ⊤) → 𝐵 ⊆ 𝐶) |
| 4 | iinss2d.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 5 | iinss2d.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 5 | n0f 4329 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| 7 | 4, 6 | sylib 218 | . . . 4 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| 8 | rextru 3068 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ⊤) | |
| 9 | 7, 8 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ⊤) |
| 10 | 1, 3, 9 | reximdd 45152 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 11 | iinss2d.3 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
| 12 | 11 | iinssf 45142 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 13 | 10, 12 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1541 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 ≠ wne 2933 ∃wrex 3061 ⊆ wss 3931 ∅c0 4313 ∩ ciin 4973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-v 3466 df-dif 3934 df-ss 3948 df-nul 4314 df-iin 4975 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |