Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reutruALT Structured version   Visualization version   GIF version

Theorem reutruALT 48654
Description: Alternate proof for reutru 48653. (Contributed by Zhi Wang, 23-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
reutruALT (∃!𝑥 𝑥𝐴 ↔ ∃!𝑥𝐴 ⊤)

Proof of Theorem reutruALT
StepHypRef Expression
1 rextru 3075 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑥𝐴 ⊤)
2 rmotru 48652 . . 3 (∃*𝑥 𝑥𝐴 ↔ ∃*𝑥𝐴 ⊤)
31, 2anbi12i 628 . 2 ((∃𝑥 𝑥𝐴 ∧ ∃*𝑥 𝑥𝐴) ↔ (∃𝑥𝐴 ⊤ ∧ ∃*𝑥𝐴 ⊤))
4 df-eu 2567 . 2 (∃!𝑥 𝑥𝐴 ↔ (∃𝑥 𝑥𝐴 ∧ ∃*𝑥 𝑥𝐴))
5 reu5 3380 . 2 (∃!𝑥𝐴 ⊤ ↔ (∃𝑥𝐴 ⊤ ∧ ∃*𝑥𝐴 ⊤))
63, 4, 53bitr4i 303 1 (∃!𝑥 𝑥𝐴 ↔ ∃!𝑥𝐴 ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wtru 1538  wex 1776  wcel 2106  ∃*wmo 2536  ∃!weu 2566  wrex 3068  ∃!wreu 3376  ∃*wrmo 3377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-mo 2538  df-eu 2567  df-rex 3069  df-rmo 3378  df-reu 3379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator