![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reutruALT | Structured version Visualization version GIF version |
Description: Alternate proof for reutru 48537. (Contributed by Zhi Wang, 23-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
reutruALT | ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rextru 3083 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ⊤) | |
2 | rmotru 48536 | . . 3 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃*𝑥 ∈ 𝐴 ⊤) | |
3 | 1, 2 | anbi12i 627 | . 2 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∃*𝑥 𝑥 ∈ 𝐴) ↔ (∃𝑥 ∈ 𝐴 ⊤ ∧ ∃*𝑥 ∈ 𝐴 ⊤)) |
4 | df-eu 2572 | . 2 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∃*𝑥 𝑥 ∈ 𝐴)) | |
5 | reu5 3390 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 ⊤ ↔ (∃𝑥 ∈ 𝐴 ⊤ ∧ ∃*𝑥 ∈ 𝐴 ⊤)) | |
6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 ⊤) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ⊤wtru 1538 ∃wex 1777 ∈ wcel 2108 ∃*wmo 2541 ∃!weu 2571 ∃wrex 3076 ∃!wreu 3386 ∃*wrmo 3387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-mo 2543 df-eu 2572 df-rex 3077 df-rmo 3388 df-reu 3389 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |