| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ralfal | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing empty set. (Contributed by Glauco Siliprandi, 24-Jan-2024.) |
| Ref | Expression |
|---|---|
| ralfal.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| ralfal | ⊢ (𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fal 1554 | . . . 4 ⊢ (⊥ ↔ ¬ ⊤) | |
| 2 | 1 | ralbii 3078 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ⊥ ↔ ∀𝑥 ∈ 𝐴 ¬ ⊤) |
| 3 | ralnex 3058 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ ⊤ ↔ ¬ ∃𝑥 ∈ 𝐴 ⊤) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ⊥ ↔ ¬ ∃𝑥 ∈ 𝐴 ⊤) |
| 5 | rextru 3063 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ⊤) | |
| 6 | 5 | notbii 320 | . 2 ⊢ (¬ ∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐴 ⊤) |
| 7 | ralfal.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 8 | 7 | neq0f 4295 | . . 3 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| 9 | 8 | con1bii 356 | . 2 ⊢ (¬ ∃𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
| 10 | 4, 6, 9 | 3bitr2ri 300 | 1 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 ⊥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ⊤wtru 1542 ⊥wfal 1553 ∃wex 1780 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 ∃wrex 3056 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |