| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ralfal | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing empty set. (Contributed by Glauco Siliprandi, 24-Jan-2024.) |
| Ref | Expression |
|---|---|
| ralfal.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| ralfal | ⊢ (𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fal 1553 | . . . 4 ⊢ (⊥ ↔ ¬ ⊤) | |
| 2 | 1 | ralbii 3082 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ⊥ ↔ ∀𝑥 ∈ 𝐴 ¬ ⊤) |
| 3 | ralnex 3062 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ ⊤ ↔ ¬ ∃𝑥 ∈ 𝐴 ⊤) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ⊥ ↔ ¬ ∃𝑥 ∈ 𝐴 ⊤) |
| 5 | rextru 3067 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ⊤) | |
| 6 | 5 | notbii 320 | . 2 ⊢ (¬ ∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐴 ⊤) |
| 7 | ralfal.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 8 | 7 | neq0f 4323 | . . 3 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| 9 | 8 | con1bii 356 | . 2 ⊢ (¬ ∃𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅) |
| 10 | 4, 6, 9 | 3bitr2ri 300 | 1 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 ⊥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ⊤wtru 1541 ⊥wfal 1552 ∃wex 1779 ∈ wcel 2108 Ⅎwnfc 2883 ∀wral 3051 ∃wrex 3060 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |