Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralfal Structured version   Visualization version   GIF version

Theorem ralfal 45268
Description: Two ways of expressing empty set. (Contributed by Glauco Siliprandi, 24-Jan-2024.)
Hypothesis
Ref Expression
ralfal.1 𝑥𝐴
Assertion
Ref Expression
ralfal (𝐴 = ∅ ↔ ∀𝑥𝐴 ⊥)

Proof of Theorem ralfal
StepHypRef Expression
1 df-fal 1554 . . . 4 (⊥ ↔ ¬ ⊤)
21ralbii 3078 . . 3 (∀𝑥𝐴 ⊥ ↔ ∀𝑥𝐴 ¬ ⊤)
3 ralnex 3058 . . 3 (∀𝑥𝐴 ¬ ⊤ ↔ ¬ ∃𝑥𝐴 ⊤)
42, 3bitri 275 . 2 (∀𝑥𝐴 ⊥ ↔ ¬ ∃𝑥𝐴 ⊤)
5 rextru 3063 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑥𝐴 ⊤)
65notbii 320 . 2 (¬ ∃𝑥 𝑥𝐴 ↔ ¬ ∃𝑥𝐴 ⊤)
7 ralfal.1 . . . 4 𝑥𝐴
87neq0f 4295 . . 3 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
98con1bii 356 . 2 (¬ ∃𝑥 𝑥𝐴𝐴 = ∅)
104, 6, 93bitr2ri 300 1 (𝐴 = ∅ ↔ ∀𝑥𝐴 ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wtru 1542  wfal 1553  wex 1780  wcel 2111  wnfc 2879  wral 3047  wrex 3056  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-dif 3900  df-nul 4281
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator