Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexex | Structured version Visualization version GIF version |
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
rexex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | exsimpr 1872 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-rex 3070 |
This theorem is referenced by: reu3 3662 rmo2i 3821 dffo5 6980 nqerf 10686 supsrlem 10867 vdwmc2 16680 toprntopon 22074 isch3 29603 19.9d2rf 30820 volfiniune 32198 bnj594 32892 bnj1371 33009 bnj1374 33011 loop1cycl 33099 umgr2cycllem 33102 umgr2cycl 33103 elxpxpss 33684 dfrdg4 34253 bj-0nelsngl 35161 bj-ccinftydisj 35384 poimirlem25 35802 mblfinlem3 35816 mblfinlem4 35817 clsk3nimkb 41650 grumnudlem 41903 ismnushort 41919 stoweidlem57 43598 |
Copyright terms: Public domain | W3C validator |