![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexex | Structured version Visualization version GIF version |
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
rexex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | exsimpr 1868 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: reu3 3749 rmo2i 3910 dffo5 7138 el2xpss 8078 nqerf 10999 supsrlem 11180 vdwmc2 17026 toprntopon 22952 isch3 31273 19.9d2rf 32498 volfiniune 34194 bnj594 34888 bnj1371 35005 bnj1374 35007 loop1cycl 35105 umgr2cycllem 35108 umgr2cycl 35109 dfrdg4 35915 bj-0nelsngl 36937 bj-ccinftydisj 37179 poimirlem25 37605 mblfinlem3 37619 mblfinlem4 37620 clsk3nimkb 44002 grumnudlem 44254 ismnushort 44270 stoweidlem57 45978 |
Copyright terms: Public domain | W3C validator |