| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexex | Structured version Visualization version GIF version | ||
| Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| rexex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | exsimpr 1869 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: reu3 3701 rmo2i 3854 dffo5 7079 el2xpss 8019 nqerf 10890 supsrlem 11071 vdwmc2 16957 toprntopon 22819 isch3 31177 19.9d2rf 32405 volfiniune 34227 bnj594 34909 bnj1371 35026 bnj1374 35028 loop1cycl 35131 umgr2cycllem 35134 umgr2cycl 35135 dfrdg4 35946 bj-0nelsngl 36966 bj-ccinftydisj 37208 poimirlem25 37646 mblfinlem3 37660 mblfinlem4 37661 clsk3nimkb 44036 grumnudlem 44281 ismnushort 44297 uniclaxun 44983 stoweidlem57 46062 |
| Copyright terms: Public domain | W3C validator |