| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexex | Structured version Visualization version GIF version | ||
| Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| rexex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | exsimpr 1870 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3058 |
| This theorem is referenced by: reu3 3682 rmo2i 3835 dffo5 7043 el2xpss 7975 nqerf 10828 supsrlem 11009 vdwmc2 16893 toprntopon 22841 isch3 31223 19.9d2rf 32450 volfiniune 34264 bnj594 34945 bnj1371 35062 bnj1374 35064 loop1cycl 35202 umgr2cycllem 35205 umgr2cycl 35206 dfrdg4 36016 bj-0nelsngl 37036 bj-ccinftydisj 37278 poimirlem25 37705 mblfinlem3 37719 mblfinlem4 37720 clsk3nimkb 44157 grumnudlem 44402 ismnushort 44418 uniclaxun 45103 stoweidlem57 46179 |
| Copyright terms: Public domain | W3C validator |