MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexex Structured version   Visualization version   GIF version

Theorem rexex 3077
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
rexex (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)

Proof of Theorem rexex
StepHypRef Expression
1 df-rex 3072 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 exsimpr 1873 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥𝜑)
31, 2sylbi 216 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wex 1782  wcel 2107  wrex 3071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-rex 3072
This theorem is referenced by:  reu3  3724  rmo2i  3883  dffo5  7106  el2xpss  8023  nqerf  10925  supsrlem  11106  vdwmc2  16912  toprntopon  22427  isch3  30494  19.9d2rf  31711  volfiniune  33228  bnj594  33923  bnj1371  34040  bnj1374  34042  loop1cycl  34128  umgr2cycllem  34131  umgr2cycl  34132  dfrdg4  34923  bj-0nelsngl  35852  bj-ccinftydisj  36094  poimirlem25  36513  mblfinlem3  36527  mblfinlem4  36528  clsk3nimkb  42791  grumnudlem  43044  ismnushort  43060  stoweidlem57  44773
  Copyright terms: Public domain W3C validator