MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexex Structured version   Visualization version   GIF version

Theorem rexex 3059
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
rexex (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)

Proof of Theorem rexex
StepHypRef Expression
1 df-rex 3054 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 exsimpr 1869 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥𝜑)
31, 2sylbi 217 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-rex 3054
This theorem is referenced by:  reu3  3689  rmo2i  3842  dffo5  7042  el2xpss  7979  nqerf  10843  supsrlem  11024  vdwmc2  16909  toprntopon  22828  isch3  31203  19.9d2rf  32431  volfiniune  34196  bnj594  34878  bnj1371  34995  bnj1374  34997  loop1cycl  35109  umgr2cycllem  35112  umgr2cycl  35113  dfrdg4  35924  bj-0nelsngl  36944  bj-ccinftydisj  37186  poimirlem25  37624  mblfinlem3  37638  mblfinlem4  37639  clsk3nimkb  44013  grumnudlem  44258  ismnushort  44274  uniclaxun  44960  stoweidlem57  46039
  Copyright terms: Public domain W3C validator