![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexex | Structured version Visualization version GIF version |
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
rexex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3068 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | exsimpr 1866 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1775 ∈ wcel 2105 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-rex 3068 |
This theorem is referenced by: reu3 3735 rmo2i 3896 dffo5 7123 el2xpss 8060 nqerf 10967 supsrlem 11148 vdwmc2 17012 toprntopon 22946 isch3 31269 19.9d2rf 32497 volfiniune 34210 bnj594 34904 bnj1371 35021 bnj1374 35023 loop1cycl 35121 umgr2cycllem 35124 umgr2cycl 35125 dfrdg4 35932 bj-0nelsngl 36953 bj-ccinftydisj 37195 poimirlem25 37631 mblfinlem3 37645 mblfinlem4 37646 clsk3nimkb 44029 grumnudlem 44280 ismnushort 44296 stoweidlem57 46012 |
Copyright terms: Public domain | W3C validator |