| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexex | Structured version Visualization version GIF version | ||
| Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| rexex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3061 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | exsimpr 1869 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: reu3 3710 rmo2i 3863 dffo5 7093 el2xpss 8034 nqerf 10942 supsrlem 11123 vdwmc2 16997 toprntopon 22861 isch3 31168 19.9d2rf 32396 volfiniune 34207 bnj594 34889 bnj1371 35006 bnj1374 35008 loop1cycl 35105 umgr2cycllem 35108 umgr2cycl 35109 dfrdg4 35915 bj-0nelsngl 36935 bj-ccinftydisj 37177 poimirlem25 37615 mblfinlem3 37629 mblfinlem4 37630 clsk3nimkb 44011 grumnudlem 44257 ismnushort 44273 uniclaxun 44959 stoweidlem57 46034 |
| Copyright terms: Public domain | W3C validator |