| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexex | Structured version Visualization version GIF version | ||
| Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| rexex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | exsimpr 1869 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: reu3 3689 rmo2i 3842 dffo5 7042 el2xpss 7979 nqerf 10843 supsrlem 11024 vdwmc2 16909 toprntopon 22828 isch3 31203 19.9d2rf 32431 volfiniune 34196 bnj594 34878 bnj1371 34995 bnj1374 34997 loop1cycl 35109 umgr2cycllem 35112 umgr2cycl 35113 dfrdg4 35924 bj-0nelsngl 36944 bj-ccinftydisj 37186 poimirlem25 37624 mblfinlem3 37638 mblfinlem4 37639 clsk3nimkb 44013 grumnudlem 44258 ismnushort 44274 uniclaxun 44960 stoweidlem57 46039 |
| Copyright terms: Public domain | W3C validator |