| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexex | Structured version Visualization version GIF version | ||
| Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| rexex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | exsimpr 1869 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3071 |
| This theorem is referenced by: reu3 3733 rmo2i 3888 dffo5 7124 el2xpss 8062 nqerf 10970 supsrlem 11151 vdwmc2 17017 toprntopon 22931 isch3 31260 19.9d2rf 32488 volfiniune 34231 bnj594 34926 bnj1371 35043 bnj1374 35045 loop1cycl 35142 umgr2cycllem 35145 umgr2cycl 35146 dfrdg4 35952 bj-0nelsngl 36972 bj-ccinftydisj 37214 poimirlem25 37652 mblfinlem3 37666 mblfinlem4 37667 clsk3nimkb 44053 grumnudlem 44304 ismnushort 44320 uniclaxun 45003 stoweidlem57 46072 |
| Copyright terms: Public domain | W3C validator |