MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexex Structured version   Visualization version   GIF version

Theorem rexex 3059
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
rexex (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)

Proof of Theorem rexex
StepHypRef Expression
1 df-rex 3054 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 exsimpr 1869 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥𝜑)
31, 2sylbi 217 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-rex 3054
This theorem is referenced by:  reu3  3698  rmo2i  3851  dffo5  7076  el2xpss  8016  nqerf  10883  supsrlem  11064  vdwmc2  16950  toprntopon  22812  isch3  31170  19.9d2rf  32398  volfiniune  34220  bnj594  34902  bnj1371  35019  bnj1374  35021  loop1cycl  35124  umgr2cycllem  35127  umgr2cycl  35128  dfrdg4  35939  bj-0nelsngl  36959  bj-ccinftydisj  37201  poimirlem25  37639  mblfinlem3  37653  mblfinlem4  37654  clsk3nimkb  44029  grumnudlem  44274  ismnushort  44290  uniclaxun  44976  stoweidlem57  46055
  Copyright terms: Public domain W3C validator