Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexex | Structured version Visualization version GIF version |
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
rexex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3072 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | exsimpr 1876 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1786 ∈ wcel 2110 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-rex 3072 |
This theorem is referenced by: reu3 3666 rmo2i 3826 dffo5 6977 nqerf 10697 supsrlem 10878 vdwmc2 16691 toprntopon 22085 isch3 29612 19.9d2rf 30829 volfiniune 32207 bnj594 32901 bnj1371 33018 bnj1374 33020 loop1cycl 33108 umgr2cycllem 33111 umgr2cycl 33112 elxpxpss 33693 dfrdg4 34262 bj-0nelsngl 35170 bj-ccinftydisj 35393 poimirlem25 35811 mblfinlem3 35825 mblfinlem4 35826 clsk3nimkb 41632 grumnudlem 41885 ismnushort 41901 stoweidlem57 43580 |
Copyright terms: Public domain | W3C validator |