MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexex Structured version   Visualization version   GIF version

Theorem rexex 3060
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
rexex (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)

Proof of Theorem rexex
StepHypRef Expression
1 df-rex 3055 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 exsimpr 1869 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥𝜑)
31, 2sylbi 217 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wrex 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-rex 3055
This theorem is referenced by:  reu3  3701  rmo2i  3854  dffo5  7079  el2xpss  8019  nqerf  10890  supsrlem  11071  vdwmc2  16957  toprntopon  22819  isch3  31177  19.9d2rf  32405  volfiniune  34227  bnj594  34909  bnj1371  35026  bnj1374  35028  loop1cycl  35131  umgr2cycllem  35134  umgr2cycl  35135  dfrdg4  35946  bj-0nelsngl  36966  bj-ccinftydisj  37208  poimirlem25  37646  mblfinlem3  37660  mblfinlem4  37661  clsk3nimkb  44036  grumnudlem  44281  ismnushort  44297  uniclaxun  44983  stoweidlem57  46062
  Copyright terms: Public domain W3C validator