MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexex Structured version   Visualization version   GIF version

Theorem rexex 3170
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
rexex (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)

Proof of Theorem rexex
StepHypRef Expression
1 df-rex 3072 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 exsimpr 1876 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥𝜑)
31, 2sylbi 216 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1786  wcel 2110  wrex 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1787  df-rex 3072
This theorem is referenced by:  reu3  3666  rmo2i  3826  dffo5  6977  nqerf  10697  supsrlem  10878  vdwmc2  16691  toprntopon  22085  isch3  29612  19.9d2rf  30829  volfiniune  32207  bnj594  32901  bnj1371  33018  bnj1374  33020  loop1cycl  33108  umgr2cycllem  33111  umgr2cycl  33112  elxpxpss  33693  dfrdg4  34262  bj-0nelsngl  35170  bj-ccinftydisj  35393  poimirlem25  35811  mblfinlem3  35825  mblfinlem4  35826  clsk3nimkb  41632  grumnudlem  41885  ismnushort  41901  stoweidlem57  43580
  Copyright terms: Public domain W3C validator