Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexex | Structured version Visualization version GIF version |
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
rexex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | exsimpr 1873 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-rex 3069 |
This theorem is referenced by: reu3 3657 rmo2i 3817 dffo5 6962 nqerf 10617 supsrlem 10798 vdwmc2 16608 toprntopon 21982 isch3 29504 19.9d2rf 30721 volfiniune 32098 bnj594 32792 bnj1371 32909 bnj1374 32911 loop1cycl 32999 umgr2cycllem 33002 umgr2cycl 33003 elxpxpss 33587 dfrdg4 34180 bj-0nelsngl 35088 bj-ccinftydisj 35311 poimirlem25 35729 mblfinlem3 35743 mblfinlem4 35744 clsk3nimkb 41539 grumnudlem 41792 ismnushort 41808 stoweidlem57 43488 |
Copyright terms: Public domain | W3C validator |