MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexex Structured version   Visualization version   GIF version

Theorem rexex 3063
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
rexex (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)

Proof of Theorem rexex
StepHypRef Expression
1 df-rex 3058 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 exsimpr 1870 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥𝜑)
31, 2sylbi 217 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2113  wrex 3057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-rex 3058
This theorem is referenced by:  reu3  3682  rmo2i  3835  dffo5  7043  el2xpss  7975  nqerf  10828  supsrlem  11009  vdwmc2  16893  toprntopon  22841  isch3  31223  19.9d2rf  32450  volfiniune  34264  bnj594  34945  bnj1371  35062  bnj1374  35064  loop1cycl  35202  umgr2cycllem  35205  umgr2cycl  35206  dfrdg4  36016  bj-0nelsngl  37036  bj-ccinftydisj  37278  poimirlem25  37705  mblfinlem3  37719  mblfinlem4  37720  clsk3nimkb  44157  grumnudlem  44402  ismnushort  44418  uniclaxun  45103  stoweidlem57  46179
  Copyright terms: Public domain W3C validator