MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexex Structured version   Visualization version   GIF version

Theorem rexex 3167
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
rexex (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)

Proof of Theorem rexex
StepHypRef Expression
1 df-rex 3069 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 exsimpr 1873 . 2 (∃𝑥(𝑥𝐴𝜑) → ∃𝑥𝜑)
31, 2sylbi 216 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-rex 3069
This theorem is referenced by:  reu3  3657  rmo2i  3817  dffo5  6962  nqerf  10617  supsrlem  10798  vdwmc2  16608  toprntopon  21982  isch3  29504  19.9d2rf  30721  volfiniune  32098  bnj594  32792  bnj1371  32909  bnj1374  32911  loop1cycl  32999  umgr2cycllem  33002  umgr2cycl  33003  elxpxpss  33587  dfrdg4  34180  bj-0nelsngl  35088  bj-ccinftydisj  35311  poimirlem25  35729  mblfinlem3  35743  mblfinlem4  35744  clsk3nimkb  41539  grumnudlem  41792  ismnushort  41808  stoweidlem57  43488
  Copyright terms: Public domain W3C validator