| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexex | Structured version Visualization version GIF version | ||
| Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| rexex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | exsimpr 1869 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: reu3 3698 rmo2i 3851 dffo5 7076 el2xpss 8016 nqerf 10883 supsrlem 11064 vdwmc2 16950 toprntopon 22812 isch3 31170 19.9d2rf 32398 volfiniune 34220 bnj594 34902 bnj1371 35019 bnj1374 35021 loop1cycl 35124 umgr2cycllem 35127 umgr2cycl 35128 dfrdg4 35939 bj-0nelsngl 36959 bj-ccinftydisj 37201 poimirlem25 37639 mblfinlem3 37653 mblfinlem4 37654 clsk3nimkb 44029 grumnudlem 44274 ismnushort 44290 uniclaxun 44976 stoweidlem57 46055 |
| Copyright terms: Public domain | W3C validator |