| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexex | Structured version Visualization version GIF version | ||
| Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| rexex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | exsimpr 1870 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: reu3 3686 rmo2i 3839 dffo5 7037 el2xpss 7969 nqerf 10818 supsrlem 10999 vdwmc2 16888 toprntopon 22838 isch3 31216 19.9d2rf 32443 volfiniune 34238 bnj594 34919 bnj1371 35036 bnj1374 35038 loop1cycl 35169 umgr2cycllem 35172 umgr2cycl 35173 dfrdg4 35984 bj-0nelsngl 37004 bj-ccinftydisj 37246 poimirlem25 37684 mblfinlem3 37698 mblfinlem4 37699 clsk3nimkb 44072 grumnudlem 44317 ismnushort 44333 uniclaxun 45018 stoweidlem57 46094 |
| Copyright terms: Public domain | W3C validator |